Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Int J Biol Macromol ; 259(Pt 2): 129204, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185302

RESUMO

Cinnamon essential oil (CEO) was emulsified by hydroxypropyl-ß-cyclodextrin/ ethyl lauroyl arginate (HPCD/LAE) complex to make nanoemulsions, which were then incorporated into maltodextrin (MD) to prepare HPCD/LAE/CEO/MD microcapsules by spray drying. The starch/polybutylene adipate terephthalate (starch/PBAT, SP) based extrusion-blowing films containing above microcapsules were developed and used as packaging materials for strawberry preservation. The morphology, encapsulation efficiency, thermal and antibacterial properties of microcapsules with different formulations were investigated. The effects of microcapsules on the physicochemical and antimicrobial properties of SP films were evaluated. When the formula was 4 % HPCD/LAE-3% CEO-10% MD (HL-3C-MD), the microcapsule had the smallest particle size (3.3 µm), the highest encapsulation efficiency (84.51 %) of CEO and the best antibacterial effect. The mechanical and antimicrobial properties of the SP film were enhanced while the water vapor transmittance and oxygen permeability decreased with the incorporation of HL-3C-MD microcapsules. The films effectively reduced the weight loss rate (49.03 %), decay rate (40.59 %) and the total number of colonies (2.474 log CFU/g) and molds (2.936 log CFU/g), thus extending the shelf life of strawberries. This study revealed that the developed SP films containing HPCD/LAE/CEO microcapsules had potential applications in degradable bioactive food packaging materials.


Assuntos
Anti-Infecciosos , Fragaria , Óleos Voláteis , Óleos Voláteis/farmacologia , Cinnamomum zeylanicum/química , 2-Hidroxipropil-beta-Ciclodextrina , Cápsulas , Amido/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Embalagem de Alimentos
2.
J Adv Res ; 57: 197-212, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37137428

RESUMO

INTRODUCTION: The continuous emergence and rapid spread of multidrug-resistant bacteria have accelerated the demand for the discovery of alternative antibiotics. Natural plants contain a variety of antibacterial components, which is an important source for the discovery of antimicrobial agents. OBJECTIVE: To explore the antimicrobial activities and related mechanisms of two lavandulylated flavonoids, sophoraflavanone G and kurarinone in Sophora flavescens against methicillin-resistant Staphylococcus aureus. METHODS: The effects of sophoraflavanone G and kurarinone on methicillin-resistant Staphylococcus aureus were comprehensively investigated by a combination of proteomics and metabolomics studies. Bacterial morphology was observed by scanning electron microscopy. Membrane fluidity, membrane potential, and membrane integrity were determined using the fluorescent probes Laurdan, DiSC3(5), and propidium iodide, respectively. Adenosine triphosphate and reactive oxygen species levels were determined using the adenosine triphosphate kit and reactive oxygen species kit, respectively. The affinity activity of sophoraflavanone G to the cell membrane was determined by isothermal titration calorimetry assays. RESULTS: Sophoraflavanone G and kurarinone showed significant antibacterial activity and anti-multidrug resistance properties. Mechanistic studies mainly showed that they could target the bacterial membrane and cause the destruction of the membrane integrity and biosynthesis. They could inhibit cell wall synthesis, induce hydrolysis and prevent bacteria from synthesizing biofilms. In addition, they can interfere with the energy metabolism of methicillin-resistant Staphylococcus aureus and disrupt the normal physiological activities of the bacteria. In vivo studies have shown that they can significantly improve wound infection and promote wound healing. CONCLUSION: Kurarinone and sophoraflavanone G showed promising antimicrobial properties against methicillin-resistant Staphylococcus aureus, suggesting that they may be potential candidates for the development of new antibiotic agents against multidrug-resistant bacteria.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Sophora , Sophora/química , Espécies Reativas de Oxigênio , Flavonoides/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Trifosfato de Adenosina/farmacologia
3.
Nutr Res ; 120: 135-144, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000279

RESUMO

Evidence has demonstrated that oxidative stress plays a crucial role in regulating cellular glucose metabolism. In previous studies, wheat germ peptide (WGP) was found to effectively mitigate oxidative stress induced by high glucose. Based on the information provided, we hypothesized that WGP could exhibit antihyperglycemic and anti-insulin-resistant effects in cells. The insulin-resistant cell model was established by insulin stimulation. The glucose consumption, glycogen content, and the activities of hexokinase and pyruvate kinase following WGP treatment were measured. The protein expression of SOCS3, phosphorylated insulin receptor substrate-1 (p-IRS1), IRS1, phosphorylated protein kinase B (p-Akt), Akt, glucose transporter 2 (GLUT2), phosphorylated GSK 3ß, GSK 3ß, FOXO1, G6P, and phosphoenolpyruvate carboxykinase were assessed by western blot analysis. Our results demonstrated that WGP treatment increased cellular glucose consumption and glycogen synthesis and enhanced hexokinase and pyruvate kinase activities. Additionally, WGP treatment was observed to cause a significant reduction in the expression of SOCS3, FOXO1, G6P, and phosphoenolpyruvate carboxykinase, as well as in the ratio of p-IRS1/IRS1. Conversely, the expression of GLUT2 and the ratios of p-Akt/Akt and p-GSK3ß/GSK3ß were upregulated by WGP. These findings suggested that WGP can activate the SOCS3/IRS1/Akt signaling pathway, thus promoting the phosphorylation of GSK-3ß and increasing the expression of FOXO1 and GLUT2, which contribute to enhancing glycogen synthesis, inhibiting gluconeogenesis, and promoting glucose transport in insulin-resistant HepG2 cells.


Assuntos
Resistência à Insulina , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Triticum , Proteínas Substratos do Receptor de Insulina/metabolismo , Hexoquinase/metabolismo , Hexoquinase/farmacologia , Piruvato Quinase/metabolismo , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato/farmacologia , Hepatócitos/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Glicogênio/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
4.
Int J Biol Macromol ; 252: 126426, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37604422

RESUMO

The effects of different types and content of polyphenol addition on the structure, cooking, antioxidant characteristics and in vitro starch digestibility of extruded buckwheat noodles were investigated in this study. The result showed epigallocatechin-3-gallate (EGCG) was more easily combined with starch to form complex than caffeic acid, and amylose tended to be combined with polyphenols to form more complex. Amylose had a protective effect on polyphenols during extrusion process, which led to a significant increase of polyphenol content and antioxidant activity of extruded noodles. The addition of polyphenol and high amylose corn starch (HACS) improved the cooking quality of extruded buckwheat noodles. The extruded buckwheat noodles with 20 % HACS and 1 % EGCG had the lowest cooking loss of 6.08 %. The addition of EGCG and HACS increased the content of resistant starch and reduced predicted glycemic index (pGI). The noodles with 20 % HACS and 3 % EGCG had the lowest pGI (63.38) and the highest resistant starch (RS) content (61.60 %). This study provides a theoretical basis for the development of low pGI extruded buckwheat noodles.


Assuntos
Fagopyrum , Amido , Amido/química , Antioxidantes/farmacologia , Amilose/química , Amido Resistente , Culinária , Farinha/análise , Polifenóis
5.
J Agric Food Chem ; 71(19): 7175-7191, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37155561

RESUMO

Aging refers to the gradual physiological changes that occur in an organism after reaching adulthood, resulting in senescence and a decline in biological functions, ultimately leading to death. Epidemiological evidence shows that aging is a driving factor in the developing of various diseases, including cardiovascular diseases, neurodegenerative diseases, immune system disorders, cancer, and chronic low-grade inflammation. Natural plant polysaccharides have emerged as crucial food components in delaying the aging process. Therefore, it is essential to continuously investigate plant polysaccharides as potential sources of new pharmaceuticals for aging. Modern pharmacological research indicates that plant polysaccharides can exert antiaging effects by scavenging free radicals, increasing telomerase activity, regulating apoptosis, enhancing immunity, inhibiting glycosylation, improving mitochondrial dysfunction regulating gene expression, activating autophagy, and modulating gut microbiota. Moreover, the antiaging activity of plant polysaccharides is mediated by one or more signaling pathways, including IIS, mTOR, Nrf2, NF-κB, Sirtuin, p53, MAPK, and UPR signaling pathways. This review summarizes the antiaging properties of plant polysaccharides and signaling pathways participating in the polysaccharide-regulating aging process. Finally, we discuss the structure-activity relationships of antiaging polysaccharides.


Assuntos
NF-kappa B , Transdução de Sinais , Plantas , Polissacarídeos/farmacologia
6.
Crit Rev Food Sci Nutr ; 63(22): 5577-5593, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34964419

RESUMO

Wheat germ protein is a potential resource to produce bioactive peptides. As a cheap, safe, and healthy nutritional factor, wheat germ-derived bioactive peptides (WGBPs) provide benefits and great potential for biomedical applications. The objective of this review is to reveal the current research status of WGBPs, including their preparation methods and biological functions, such as antibacterial, anti-tumor, immune regulation, antioxidant, and anti-inflammatory properties, etc. We also reviewed the information in terms of the preventive ability of WGBPs to treat serious infectious diseases, to offer their reference to further research and application. Opinions on future research directions are also discussed. Through the review of previous research, we find that there are still some scientific issues in the basic research and industrialization process of WGBPs that deserve further exploration. Firstly, based on current complex enzymolysis, the preparation and production of WGBPs need to be combined with other advanced technology to achieve efficient and large-scale production. Secondly, studies on the bioavailability, biosafety, and mechanism against different diseases of WGBPs need to be carried out in different in vitro and in vivo models. More human experimental evidence is also required to support its industrial application as a functional food and nutritional supplement.HighlightsThe purification and identification of wheat germ-derived bioactive peptides.The main biological activities and potential mechanisms of wheat germ hydrolysates/peptides.Possible absorption and transport pathways of wheat germ hydrolysate/peptide.Wheat germ peptide shows a variety of health benefits according to its amino acid sequence.Current food applications and future perspectives of wheat germ protein hydrolysates/peptide.


Assuntos
Peptídeos , Triticum , Humanos , Triticum/química , Peptídeos/química , Sequência de Aminoácidos , Grão Comestível/química , Nutrientes
7.
Phytomedicine ; 104: 154304, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35793596

RESUMO

BACKGROUND: Oxidative stress played a key role in the development of bone brittleness and is an important pathogenic factor of senile osteoporosis. A variety of animal and plant-derived peptides have been shown to have significant anti-osteoporosis effects in vivo and in vitro. PURPOSE: In this study, we aim to explore the possible mechanism of wheat germ peptide ADWGGPLPH on senile osteoporosis. STUDY DESIGN: Naturally, aged rats were used as animal models of senile osteoporosis. METHODS: Wheat germ peptide ADWGGPLPH was administered from 9-months-old to 21-months-old, and the effect of ADWGGPLPH on preventing senile osteoporosis was evaluated by measuring serum biochemical indexes, bone histomorphometry, bone biomechanics, and other indexes to elucidate the mechanism of ADWGGPLPH in delaying senile osteoporosis by detecting the expression of osteoporosis-related proteins. RESULTS: The results showed that ADWGGPLPH could effectively reduce the level of oxidative stress and improve the microstructure and bone mineral density in senile osteoporosis rats. In addition, ADWGGPLPH could improve the proliferation and differentiation activity of osteoblasts and effectively inhibit osteoclasts' differentiation by regulating the OPG/RANKL/RANK/TRAF6 pathway. CONCLUSION: ADWGGPLPH from wheat germ exhibited a notably effect on senile osteoporosis and has a high potential in the development of the nutrient regimen to against senile osteoporosis.


Assuntos
Osteoporose , Fator 6 Associado a Receptor de TNF , Animais , Densidade Óssea , Nutrientes , Osteoclastos , Osteoporose/metabolismo , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Ratos , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Triticum/metabolismo
8.
Food Res Int ; 156: 111351, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35650980

RESUMO

In this study, nanoparticles (NPs) prepared with xanthan gum and lysozyme were established as a powerful delivery system for two Se-containing peptides: TSeMMM (STP) and SeMDPGQQ (SHP). NPs-STP and NPs-SHP had relatively small particle sizes (145 nm and 148 nm) and negative zeta potentials (-47 mV and -49 mV). The encapsulation efficiency of NPs-STP and NPs-SHP was determined to be 34.35% and 41.35%, respectively. The stability and antioxidant activity of Se-containing peptides were greatly enhanced due to encapsulation. NPs-STP and NPs-SHP exhibited controlled release of Se-containing peptides under in vitro gastrointestinal conditions. NPs-STP and NPs-SHP showed low toxicity and entered Caco-2 cells through clathrin-mediated endocytosis, contributing to a significant increase in the apparent permeability coefficient of STP (2.19 × 10-6 cm/s) and SHP (2.21 × 10-6 cm/s). Thus, NPs-STP and NPs-SHP are considered promising delivery systems for Se-containing peptides and have good potential applications in the food and pharmaceutical industries.


Assuntos
Nanopartículas , Selênio , Células CACO-2 , Humanos , Muramidase , Peptídeos , Polissacarídeos Bacterianos
9.
Nutr Res ; 102: 35-44, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35405601

RESUMO

The results from epidemiological studies on the relationship between coffee consumption and gastric cancer risk are inconsistent and inconclusive. Based on the previous studies, we hypothesized that coffee consumption was not associated with the risk of gastric cancer. We aimed to test this hypothesis by conducting a meta-analysis to systematically review and quantify the relationship between coffee consumption and the risk of gastric cancer. Relevant prospective cohort studies were identified by a search of PubMed and Embase up to March 2021. A total of 18 independent prospective cohorts from 15 studies involving 1,608,760 participants and 3898 gastric cancer cases were included in this meta-analysis. A nonsignificant association with a pooled relative risk (RR) of 1.11 (95% confidence interval [CI], 0.99-1.25) was shown between coffee intake and the risk of gastric cancer. The dose-response analysis also suggested no significant effect on the risk of gastric cancer per 1 cup/d increment in coffee consumption (RR = 1.00; 95% CI, 0.99-1.01). No nonlinear association of gastric cancer risk with coffee consumption was found (P for nonlinearity = .17). In the subgroup analyses, significantly increased risk of gastric cancer was detected in the studies conducted in the United States (RR = 1.28; 95% CI, 1.03-1.58). In conclusion, coffee consumption had no effect on the risk of gastric cancer. However, the effect of coffee intake on persons in the United States must be further evaluated by additional high-quality and large-scale cohort studies.


Assuntos
Café , Neoplasias Gástricas , Café/efeitos adversos , Estudos de Coortes , Humanos , Estudos Prospectivos , Risco , Fatores de Risco , Neoplasias Gástricas/induzido quimicamente , Neoplasias Gástricas/etiologia
10.
J Sci Food Agric ; 102(5): 1968-1977, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34514612

RESUMO

BACKGROUND: Pomegranate is a rich source of polyphenols and has been used as a dietary supplement and pharmaceutical ingredient. This study aimed to investigate the pomegranate fruit pulp polyphenols (PFP) with regard to their anti-obesity activity and gut microbiota-modulating effect in mice. Thirty-six 4-week-old specific pathogen-free C57BL/6J mice (weight: 17.7-20.8 g) were randomly divided into three groups and fed with low-fat diet (10% fat energy), high-fat diet (HFD) (45% fat energy), or HFD supplemented with PFP by intragastric administration for 14 weeks. The obesity-related clinical indicators were investigated, and the composition of fecal microbiota was analyzed by 16S rRNA sequencing. RESULTS: Our results showed that PFP treatment reduced HFD-induced body weight gain by 35.23% (P < 0.05), steatosis scores by 50% (P < 0.05) and insulin resistance by 56.84% (P < 0.05), compared with the mice fed HFD alone. Moreover, compared with the mice in the HFD group, PFP supplement changed the composition of the gut microbiota, and enriched Akkermansia muciniphila, Parabacteroides distasonis, Bacteroides acidifaciens, Mucispirillum schaedleri and Lachnospiraceae bacterium 28-4, which were negatively correlated with physical biomarkers, including body weight, glucose, triglycerides and total cholesterol. CONCLUSION: PFP alleviated HFD-induced obesity, insulin resistance and hepatic steatosis in mice, and the changes in the gut microbiota might be one of the potential mechanisms through which PFP improved obesity and obesity-related disorders, eventually benefiting the recipient. © 2021 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Punica granatum , Animais , Dieta Hiperlipídica/efeitos adversos , Frutas , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/microbiologia , Polifenóis/farmacologia , Polifenóis/uso terapêutico , RNA Ribossômico 16S
11.
Int J Biol Macromol ; 188: 24-31, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364935

RESUMO

To improve the antimicrobial properties of chitosan films, cinnamon essential oil (CEO) nanoemulsion (1% and 3% v/v CEO) stabilized by ethyl-Nα-lauroyl-l-arginate hydrochloride (LAE) alone or co-stabilized by LAE and hydroxypropyl-ß-cyclodextrin (HPCD) were incorporated into chitosan matrix. The micromorphology, physical and antimicrobial properties of the composite films were compared. The dense structure of the CEO nanoemulsion co-stabilized by LAE and HPCD reduced the water vapor permeability and water content. The incorporation of the CEO nanoemulsion co-stabilized by LAE and HPCD, reduced the adverse effects of CEO on the mechanical properties and microstructure of the film, and even slightly increased the tensile strength. In addition, the antimicrobial properties of chitosan films were enhanced due to the encapsulation and emulsification effect of HPCD and LAE on CEO. This work indicated that the prepared chitosan based edible films had the potential to be used in the field of food packaging to improve food safety.


Assuntos
Bactérias/efeitos dos fármacos , Quitosana/química , Cinnamomum zeylanicum/química , Óleos Voláteis/química , 2-Hidroxipropil-beta-Ciclodextrina/química , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Arginina/análogos & derivados , Arginina/química , Arginina/farmacologia , Bactérias/patogenicidade , Quitosana/farmacologia , Emulsões/química , Emulsões/farmacologia , Embalagem de Alimentos , Humanos , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Água/química
12.
J Food Biochem ; 45(7): e13808, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34075620

RESUMO

Vaccinium bracteatum Thunb. fruits have been used as traditional food. This study investigated the effects of a polyphenol-rich Vaccinium bracteatum Thunb. fruit extract (VBTE) on obesity and obesity-related diseases in mice, and the potential role of the gut microbiota in the bioactivity of VBTE was also determined. Chemical constituents of the VBTE were analyzed by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS). C57BL/6J mice (weighing 17.8-21.6 g) were fed a low-fat diet (LFD) or high-fat diet (HFD) with or without VBTE treatment for 14 weeks. The gut microbial changes were determined using 16S rRNA sequencing. Our results showed that VBTE mainly contains 36 kinds of polyphenols. VBTE reduced HFD-induced body weight gain by 33.42% (p < .05), steatosis scores by 56.25% (p < .05), and insulin resistance index by 51.49% (p < .05). Moreover, VBTE altered the composition of the gut microbiota. The correlation analysis indicated that Akkermansia, Alistipes, Bacteroides, Alloprevotella, Ruminiclostridium, Ruminiclostridium_9, and Rikenellaceae_RC9_gut_group were negatively correlated with serum lipids, glucose, and insulin, while Escherichia-Shigella was positively associated with these clinical indicators. In conclusion, VBTE supplement could reduce obesity and be a treatment option for obesity-related diseases by influencing the gut microbiota in mice. PRACTICAL APPLICATIONS: Plant extracts are widely used to treat obesity and related metabolic disorders. Polyphenols, the well-known natural antioxidants present in fruits, are consumed as a dietary supplement to prevent many diseases. Recent pharmacological studies have reported that Vaccinium bracteatum Thunb. fruits have many physiological functions, such as anti-proliferative, anti-inflammatory, and antidepressant-like effects. Despite these properties of Vaccinium bracteatum Thunb. fruits, their anti-obesity effect has not been studied to date. The findings of this study will support VBTE could be used as an important therapeutic application for preventing obesity and related metabolic diseases by modulating the gut microbiota.


Assuntos
Microbioma Gastrointestinal , Vaccinium myrtillus , Animais , Dieta Hiperlipídica/efeitos adversos , Frutas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/etiologia , Extratos Vegetais/farmacologia , RNA Ribossômico 16S/genética , Espectrometria de Massas em Tandem
13.
J Nutr Biochem ; 92: 108627, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33705946

RESUMO

Previous reports have shown that plant-derived microRNAs (miRNAs) regulate mammalian gene expression through dietary intake. Our prior study found that gma-miR159a, which is abundant in soybean, significantly inhibited the proliferation of colon cancer cells. In the current study, dietary gma-miR159a was utilized to study its anti-colon cancer function in azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon cancer mice. Under processing conditions, gma-miR159a exhibited excellent stability in cooked soybean. In vitro, gma-miR159a suppressed the expression of the oncogene MYC downstream of the Wnt signaling pathway by targeting the TCF7 gene, significantly inhibiting the growth of colon cancer cells. The in vivo experiments showed that gma-miR159a and soybean RNA (total RNA extracted from soybean) significantly reduced tumor growth in AOM/DSS-induced colon cancer mice by gavage. This effect disappeared when anti-miR159a was present. In addition, gma-miR159a and soybean RNA significantly attenuated inflammation in colon cancer mice. These results showed that long-term dietary intake of soybean-derived gma-miR159a effectively prevented the occurrence of colon cancer and colitis, which provides novel evidence for the prevention function of soybean.


Assuntos
Neoplasias do Colo/terapia , Glycine max/genética , Fator 1-alfa Nuclear de Hepatócito/genética , MicroRNAs/uso terapêutico , Proteínas Proto-Oncogênicas c-myc/genética , RNA de Plantas/uso terapêutico , Animais , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Regulação para Baixo , Terapia Genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , RNA de Plantas/genética
14.
Food Chem Toxicol ; 148: 111943, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33359324

RESUMO

Previous studies have revealed that Selenium-enriched rice protein hydrolysates (SPHs) could alleviate Pb2+-induced apoptosis in RAW264.7 macrophages. The purpose of the current study was to detect the effect of different selenium (Se) species on immunotoxicity of the Pb2+-induced RAW264.7 macrophages and explore the potential immunomodulatory mechanism. Herein, SPHs, an isolated SPHs fraction (SPHs-2), selenomethionine (SeMet), selenite (SeIV) were used to investigate their inhibitory effect and the impacts on the expression of cytokines and related protein kinases in immunomodulatory pathways. The results showed that, compared with Pb2+-only group, Se-containing components significantly enhanced the cell viability and effectively decrease nitric oxide (NO) content in Pb2+-induced RAW264.7 cells. Furthermore, compared with other Se species, SPHs-2 markedly decreased the secretion levels of pro-inflammatory cytokines TNF-α, NF-κB, IL-1ß, MyD88, IL-6 and IL-8. Western blot results demonstrated that SPHs-2 effectively downregulated the expressions of IκB, IKKα, p38, and Erk1/2, and also successfully blocked the phosphorylation of these protein kinases. Our findings suggested that SPHs-2 effectively attenuate inflammatory response and inhibit the immunotoxicity of Pb2+ on RAW264.7 macrophages via regulating NF-κB/MAPK signaling pathways.


Assuntos
Chumbo/toxicidade , Macrófagos/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Hidrolisados de Proteína/farmacologia , Ácido Selenioso/farmacologia , Selenometionina/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Óxido Nítrico/metabolismo , Oryza/química , Células RAW 264.7
15.
Food Funct ; 11(11): 10161-10169, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33155602

RESUMO

5-n-Alkylresorcinols (ARs) are abundant in wheat bran and potentially antioxidative, although the neuroprotective mechanism is not fully understood. The neuroprotective effect of wheat bran ARs on H2O2-induced neuronal cells and the relationship between neuroprotection and the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant-response element (ARE) pathway were investigated in this study. Seven homologs were identified in the purified ARs by high-performance liquid chromatography-tandem mass spectrometry. Pretreatment with 80 µg mL-1 ARs alleviated 23% HT22 cell death and the up-regulation of intracellular reactive oxygen species level and malondialdehyde under H2O2 stimulation. The neuroprotection effect was proved by the increase in the Nrf2 nuclear location and up-regulation of mRNA and protein expressions of heme oxygenase-1, NAD(P)H quinone dehydrogenase 1, glutamate-cysteine ligase catalytic subunit, and glutamate-cysteine ligase modifier subunit l. Wheat bran ARs displayed a neuroprotective function, possibly by promoting the endogenous antioxidant defense system. ARs may be regarded as a functional food ingredient for preventing neurodegenerative diseases in the future.


Assuntos
Hipocampo/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Resorcinóis/farmacologia , Triticum/química , Animais , Elementos de Resposta Antioxidante/efeitos dos fármacos , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular , Fibras na Dieta/análise , Hipocampo/metabolismo , Malondialdeído/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Neurônios/metabolismo , Neuroproteção , Fármacos Neuroprotetores/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Resorcinóis/química
16.
Food Funct ; 11(8): 6843-6854, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32662486

RESUMO

This study explores the antioxidative effect of a specific wheat germ-derived peptide on high glucose-induced oxidative stress in vascular smooth muscle cells (VSMCs) and the underlying mechanisms. The peptide ADWGGPLPH was identified by LC-MS/MS. The effects of this peptide on the production of ROS and the expression of oxidative stress signaling proteins in VSMCs were determined. STZ-induced mice were utilized to confirm the anti-oxidative and anti-diabetic cardiovascular disease effects of this peptide in vivo. The results showed that ADWGGPLPH significantly prevented high glucose-induced cell proliferation, decreased intracellular ROS generation, stimulated AMPK activity, inhibited the PKCζ, AKT and Erk1/2 phosphorylation, and suppressed NOX4 protein expression. In addition, ADWGGPLPH enhanced the antioxidant abilities and attenuated inflammatory cytokine generation in STZ-induced diabetic mice. Therefore, ADWGGPLPH prevents high glucose-induced oxidative stress in VSMCs by modulating the PKCζ/AMPK/NOX4 pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , NADPH Oxidase 4/genética , Estresse Oxidativo , Peptídeos/farmacologia , Proteína Quinase C/genética , Triticum/química , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antioxidantes/análise , Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida , Diabetes Mellitus Experimental/tratamento farmacológico , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , NADPH Oxidase 4/metabolismo , Peptídeos/análise , Fosforilação , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Espectrometria de Massas em Tandem
17.
Genomics ; 112(5): 2949-2958, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32407773

RESUMO

MicroRNAs (miRNAs) are important regulators of gene expression in eukaryotes. Studies have shown that plant-derived miRNAs can be absorbed through diets and regulate gene expression in mammals. Although soybean-derived miRNAs have been reported, their biological functions are still unclear. In this study, we found that soybean-derived small RNAs (sRNAs) significantly inhibited the proliferation and stimulated the apoptosis of Caco-2 cells. Bioinformatics analysis indicated that the target gene set of soybean miRNAs was extensively enriched in cancer pathways. Besides, we obtained 8 target genes, including Transcription factor 7 (TCF7), associated with colon cancer through prediction. Further studies showed that gma-miR159a inhibited the proliferation of Caco-2 cells and played an important role in the inhibitory effect of sRNAs by inhibiting TCF7 protein, which are upregulated in colon cancer cells but not normal mucosal cells in culture. These findings provide a novel molecular mechanism of soybean-derived miRNAs for potential application in tumor prevention.


Assuntos
Neoplasias do Colo/genética , Glycine max/genética , MicroRNAs/fisiologia , RNA de Plantas/fisiologia , Apoptose , Células CACO-2 , Linhagem Celular , Proliferação de Células , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Progressão da Doença , Humanos , Mucosa Intestinal/citologia , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/metabolismo
18.
Biochem Biophys Res Commun ; 524(4): 943-950, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32059850

RESUMO

Wheat germ derivatives have been shown to inhibit inflammation-related diseases. In this study, a small peptide (YDWPGGRN) isolated from wheat germ was used to study its anti-inflammatory activity and its application in skin wound healing. Both the in vitro and in vivo results clearly showed that YDWPGGRN significantly inhibited the LPS-stimulated NO, IL-1ß, IL-6 and TNF-α production but promoted the release of an anti-inflammatory cytokine, IL-10. In addition, YDWPGGRN directly enhanced the proliferation and migration of HaCaT cells and L929 cells. Furthermore, the results demonstrated that YDWPGGRN was able to stimulate angiogenesis and collagen production in wound areas, consequently accelerating the skin wound-healing processes in a rat model with a full thickness dermal wound. The current findings suggest that YDWPGGRN promotes wound healing by anti-inflammatory reactions and enhances the proliferation and migration of keratinocytes and fibroblasts; therefore, it may be applicable for skin wound therapeutics.


Assuntos
Anti-Inflamatórios/uso terapêutico , Peptídeos/uso terapêutico , Pele/efeitos dos fármacos , Triticum , Cicatrização/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno/análise , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Camundongos , Peptídeos/química , Peptídeos/farmacologia , Células RAW 264.7 , Ratos Sprague-Dawley , Pele/patologia , Triticum/química
19.
Food Chem ; 311: 125948, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31877545

RESUMO

The increasing incidence of metabolic syndrome requires more functional food products with low cost and excellent effects to assist treatment. The crude extract of Moringa oleifera Lam. showed excellent hypoglycemic activity. The current study was designed to investigate the effects and mechanism of niazirin, a bioactive component from Moringa oleifera Lam. seed, on diabetic metabolic syndrome. C57BL/6J mice were treated daily with 5 mL/kg/body weight (BW) of saline, while db/db mice were similarly treated with 5 mL/kg/BW of saline, 10 and 20 mg/kg/BW of niazirin, respectively. Results indicated that niazirin could significantly reduce body weight, water and food intake, improve hyperglycemia, insulin resistance, inflammation, carbohydrate and lipid metabolism, non-alcoholic fatty liver. Furthermore, niazirin improved the hepatic energy metabolism via AMPK signaling pathway. Our study provides an evidence of an edible plant product, niazirin, may help in the treatment of metabolic syndrome.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus/tratamento farmacológico , Glicosídeos/administração & dosagem , Hipoglicemiantes/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Moringa oleifera/química , Fenóis/administração & dosagem , Extratos Vegetais/administração & dosagem , Proteínas Quinases Ativadas por AMP/genética , Animais , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Humanos , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sementes/química
20.
J Med Food ; 22(9): 907-918, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31390269

RESUMO

Moringa oleifera is a natural plant with high nutritional and pharmacological value. Leaves of M. oleifera contain a variety of active substances. In our previous research, we had obtained a polysaccharide separated from M. oleifera leaf, namely MOs-2-a (1.35 × 104 Da). In this study, this polysaccharide was administrated daily to 6 week-old ICR mice for 4 weeks. Then, the body weight, immunity, intestinal digestion, and intestinal microenvironment of Institute of Cancer Research (ICR) mice were investigated. After 4 weeks of feeding intervention with the polysaccharide, the immune and intestinal digestive ability of the ICR mice were significant as shown by the organ index, digestive enzymes, and reduction of serum tumor necrosis factor-alpha and diamine oxidase levels. The polysaccharide could regulate the microbial composition of the intestinal tract in mice by increasing the bacteria that have been reported for antiobesity effects, short chain fatty acid production, and lactic acid production. These findings indicate that the polysaccharide of M. oleifera leaf might be a promising prebiotic that exhibits health promotion effects.


Assuntos
Bactérias/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Moringa oleifera/química , Extratos Vegetais/administração & dosagem , Polissacarídeos/administração & dosagem , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Carboidratos da Dieta/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos ICR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA