Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1250893, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841927

RESUMO

The Wnt/ß-catenin pathway is abnormally activated in most lung cancer tissues and considered to be an accelerator of carcinogenesis and lung cancer progression, which is closely related to increased morbidity rates, malignant progression, and treatment resistance. Although targeting the canonical Wnt/ß-catenin pathway shows significant potential for lung cancer therapy, it still faces challenges owing to its complexity, tumor heterogeneity and wide physiological activity. Therefore, it is necessary to elucidate the role of the abnormal activation of the Wnt/ß-catenin pathway in lung cancer progression. Moreover, Wnt inhibitors used in lung cancer clinical trials are expected to break existing therapeutic patterns, although their adverse effects limit the treatment window. This is the first study to summarize the research progress on various compounds, including natural products and derivatives, that target the canonical Wnt pathway in lung cancer to develop safer and more targeted drugs or alternatives. Various natural products have been found to inhibit Wnt/ß-catenin in various ways, such as through upstream and downstream intervention pathways, and have shown encouraging preclinical anti-tumor efficacy. Their diversity and low toxicity make them a popular research topic, laying the foundation for further combination therapies and drug development.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36674147

RESUMO

Covalent organic framework (COF)-TpBD was grafted on the arrayed nanopores of stainless steel fiber (SSF) with (3-aminopropyl) triethoxysilane as the cross-linking agent. The prepared SSF bonded with COF-TpBD showed high thermal and chemical stability and excellent repeatability. The prepared SSF bonded with COF-TpBD was also used for the solid-phase microextraction (SPME) of seven kinds of polycyclic aromatic hydrocarbons (PAHs) in actual water samples, followed by gas chromatography with flame ionization detection (GC-FID) determination, which exhibited low limits of detection (LODs), good relative standard deviation (RSD) and high recoveries.


Assuntos
Estruturas Metalorgânicas , Nanoporos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Água/química , Estruturas Metalorgânicas/química , Aço Inoxidável , Hidrocarbonetos Policíclicos Aromáticos/análise , Microextração em Fase Sólida/métodos , Limite de Detecção , Poluentes Químicos da Água/análise
3.
J Clin Invest ; 130(11): 5951-5966, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33016929

RESUMO

ARID1A, a component of the chromatin-remodeling complex SWI/SNF, is one of the most frequently mutated genes in human cancer. We sought to develop rational combination therapy to potentiate the efficacy of immune checkpoint blockade in ARID1A-deficient tumors. In a proteomic analysis of a data set from The Cancer Genomic Atlas, we found enhanced expression of Chk2, a DNA damage checkpoint kinase, in ARID1A-mutated/deficient tumors. Surprisingly, we found that ARID1A targets the nonchromatin substrate Chk2 for ubiquitination. Loss of ARID1A increased the Chk2 level through modulating autoubiquitination of the E3-ligase RNF8 and thereby reducing RNF8-mediated Chk2 degradation. Inhibition of the ATM/Chk2 DNA damage checkpoint axis led to replication stress and accumulation of cytosolic DNA, which subsequently activated the DNA sensor STING-mediated innate immune response in ARID1A-deficient tumors. As expected, tumors with mutation or low expression of both ARID1A and ATM/Chk2 exhibited increased tumor-infiltrating lymphocytes and were associated with longer patient survival. Notably, an ATM inhibitor selectively potentiated the efficacy of immune checkpoint blockade in ARID1A-depleted tumors but not in WT tumors. Together, these results suggest that ARID1A's targeting of the nonchromatin substrate Chk2 for ubiquitination makes it possible to selectively modulate cancer cell-intrinsic innate immunity to enhance the antitumor activity of immune checkpoint blockade.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias , Neoplasias , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Fatores de Transcrição/deficiência , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Quinase do Ponto de Checagem 2/genética , Proteínas de Ligação a DNA/metabolismo , Células HCT116 , Humanos , Proteínas de Membrana/genética , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Nucleotidiltransferases/genética , Proteólise , Fatores de Transcrição/metabolismo
4.
Nat Med ; 24(5): 556-562, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29736026

RESUMO

ARID1A (the AT-rich interaction domain 1A, also known as BAF250a) is one of the most commonly mutated genes in cancer1,2. The majority of ARID1A mutations are inactivating mutations and lead to loss of ARID1A expression 3 , which makes ARID1A a poor therapeutic target. Therefore, it is of clinical importance to identify molecular consequences of ARID1A deficiency that create therapeutic vulnerabilities in ARID1A-mutant tumors. In a proteomic screen, we found that ARID1A interacts with mismatch repair (MMR) protein MSH2. ARID1A recruited MSH2 to chromatin during DNA replication and promoted MMR. Conversely, ARID1A inactivation compromised MMR and increased mutagenesis. ARID1A deficiency correlated with microsatellite instability genomic signature and a predominant C>T mutation pattern and increased mutation load across multiple human cancer types. Tumors formed by an ARID1A-deficient ovarian cancer cell line in syngeneic mice displayed increased mutation load, elevated numbers of tumor-infiltrating lymphocytes, and PD-L1 expression. Notably, treatment with anti-PD-L1 antibody reduced tumor burden and prolonged survival of mice bearing ARID1A-deficient but not ARID1A-wild-type ovarian tumors. Together, these results suggest ARID1A deficiency contributes to impaired MMR and mutator phenotype in cancer, and may cooperate with immune checkpoint blockade therapy.


Assuntos
Imunoterapia , Mutação/genética , Neoplasias/genética , Neoplasias/imunologia , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Animais , Linhagem Celular Tumoral , Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA , Feminino , Humanos , Linfócitos do Interstício Tumoral/imunologia , Camundongos Endogâmicos C57BL , Proteína 2 Homóloga a MutS/metabolismo , Ligação Proteica
5.
Am J Hum Genet ; 100(1): 21-30, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27939641

RESUMO

Fibromuscular dysplasia (FMD) is a heterogeneous group of non-atherosclerotic and non-inflammatory arterial diseases that primarily involves the renal and cerebrovascular arteries. Grange syndrome is an autosomal-recessive condition characterized by severe and early-onset vascular disease similar to FMD and variable penetrance of brachydactyly, syndactyly, bone fragility, and learning disabilities. Exome-sequencing analysis of DNA from three affected siblings with Grange syndrome identified compound heterozygous nonsense variants in YY1AP1, and homozygous nonsense or frameshift YY1AP1 variants were subsequently identified in additional unrelated probands with Grange syndrome. YY1AP1 encodes yin yang 1 (YY1)-associated protein 1 and is an activator of the YY1 transcription factor. We determined that YY1AP1 localizes to the nucleus and is a component of the INO80 chromatin remodeling complex, which is responsible for transcriptional regulation, DNA repair, and replication. Molecular studies revealed that loss of YY1AP1 in vascular smooth muscle cells leads to cell cycle arrest with decreased proliferation and increased levels of the cell cycle regulator p21/WAF/CDKN1A and disrupts TGF-ß-driven differentiation of smooth muscle cells. Identification of YY1AP1 mutations as a cause of FMD indicates that this condition can result from underlying genetic variants that significantly alter the phenotype of vascular smooth muscle cells.


Assuntos
Displasia Fibromuscular/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Mutação , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Osso e Ossos/patologia , Braquidactilia/genética , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular , Exoma/genética , Feminino , Genes Recessivos , Heterozigoto , Homozigoto , Humanos , Deficiências da Aprendizagem/genética , Masculino , Pessoa de Meia-Idade , Linhagem , Sindactilia/genética , Síndrome
6.
Cancer Discov ; 5(7): 752-67, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26069190

RESUMO

UNLABELLED: ARID1A, SWI/SNF chromatin remodeling complex subunit, is a recently identified tumor suppressor that is mutated in a broad spectrum of human cancers. Thus, it is of fundamental clinical importance to understand its molecular functions and determine whether ARID1A deficiency can be exploited therapeutically. In this article, we report a key function of ARID1A in regulating the DNA damage checkpoint. ARID1A is recruited to DNA double-strand breaks (DSB) via its interaction with the upstream DNA damage checkpoint kinase ATR. At the molecular level, ARID1A facilitates efficient processing of DSB to single-strand ends and sustains DNA damage signaling. Importantly, ARID1A deficiency sensitizes cancer cells to PARP inhibitors in vitro and in vivo, providing a potential therapeutic strategy for patients with ARID1A-mutant tumors. SIGNIFICANCE: ARID1A has been identified as one of the most frequently mutated genes across human cancers. Our data suggest that clinical utility of PARP inhibitors might be extended beyond patients with BRCA mutations to a larger group of patients with ARID1A-mutant tumors, which may exhibit therapeutic vulnerability to PARP inhibitors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Dano ao DNA , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Nucleares/deficiência , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Fatores de Transcrição/deficiência , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA , Feminino , Células HCT116 , Humanos , Neoplasias Pulmonares/genética , Masculino , Camundongos , Proteínas Nucleares/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Fatores de Transcrição/química , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Genes Dev ; 29(6): 591-602, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25792597

RESUMO

ATP-dependent chromatin remodeling complexes alter chromatin structure through interactions with chromatin substrates such as DNA, histones, and nucleosomes. However, whether chromatin remodeling complexes have the ability to regulate nonchromatin substrates remains unclear. Saccharomyces cerevisiae checkpoint kinase Mec1 (ATR in mammals) is an essential master regulator of genomic integrity. Here we found that the SWI/SNF chromatin remodeling complex is capable of regulating Mec1 kinase activity. In vivo, Mec1 activity is reduced by the deletion of Snf2, the core ATPase subunit of the SWI/SNF complex. SWI/SNF interacts with Mec1, and cross-linking studies revealed that the Snf2 ATPase is the main interaction partner for Mec1. In vitro, SWI/SNF can activate Mec1 kinase activity in the absence of chromatin or known activators such as Dpb11. The subunit requirement of SWI/SNF-mediated Mec1 regulation differs from that of SWI/SNF-mediated chromatin remodeling. Functionally, SWI/SNF-mediated Mec1 regulation specifically occurs in S phase of the cell cycle. Together, these findings identify a novel regulator of Mec1 kinase activity and suggest that ATP-dependent chromatin remodeling complexes can regulate nonchromatin substrates such as a checkpoint kinase.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , Dano ao DNA/fisiologia , Ativação Enzimática , Ativadores de Enzimas/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
9.
Nat Rev Mol Cell Biol ; 10(6): 373-84, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19424290

RESUMO

Chromatin-modifying factors have essential roles in DNA processing pathways that dictate cellular functions. The ability of chromatin modifiers, including the INO80 and SWR1 chromatin-remodelling complexes, to regulate transcriptional processes is well established. However, recent studies reveal that the INO80 and SWR1 complexes have crucial functions in many other essential processes, including DNA repair, checkpoint regulation, DNA replication, telomere maintenance and chromosome segregation. During these diverse nuclear processes, the INO80 and SWR1 complexes function cooperatively with their histone substrates, gamma-H2AX and H2AZ. This research reveals that INO80 and SWR1 ATP-dependent chromatin remodelling is an integral component of pathways that maintain genomic integrity.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Animais , Cromatina/metabolismo , Cromossomos Fúngicos/metabolismo , Cromossomos Fúngicos/ultraestrutura , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , Histonas/classificação , Histonas/genética , Histonas/metabolismo , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Transcrição Gênica
10.
Curr Opin Genet Dev ; 17(2): 126-31, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17320375

RESUMO

ATP-dependent chromatin remodeling complexes use ATP hydrolysis to remodel nucleosomes and have well-established functions in transcription. However, emerging lines of evidence suggest that chromatin remodeling complexes are important players in DNA double-strand break (DSB) repair as well. The INO80 and SWI2 subfamilies of chromatin remodeling complexes have been found to be recruited to the double-strand lesions and to function directly in both homologous recombination and non-homologous end-joining, the two major conserved DSB repair pathways. Improperly repaired DSBs are implicated in cancer development in higher organisms. Understanding how chromatin remodeling complexes contribute to DSB repair should provide new insights into the mechanisms of carcinogenesis and might suggest new targets for cancer treatment.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Modelos Genéticos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Mutat Res ; 618(1-2): 18-29, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17316710

RESUMO

ATP-dependent chromatin remodeling complexes contain ATPases of the Swi/Snf superfamily and alter DNA accessibility of chromatin in an ATP-dependent manner. Recently characterized INO80 and SWR1 complexes belong to a subfamily of these chromatin remodelers and are characterized by a split ATPase domain in the core ATPase subunit and the presence of Rvb proteins. INO80 and SWR1 complexes are evolutionarily conserved from yeast to human and have been implicated in transcription regulation, as well as DNA repair. The individual components, assembly patterns, and molecular mechanisms of the INO80 class of chromatin remodeling complexes are discussed in this review.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Animais , DNA/química , Evolução Molecular , Humanos , Conformação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo
12.
Trends Genet ; 22(12): 671-7, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16997415

RESUMO

Although chromatin remodeling has a key role in the regulation of gene expression, it is also important for other chromatin-based processes such as DNA repair, replication and recombination. ATP-dependent chromatin remodeling factors have unique roles in disrupting histone-DNA interactions and are targeted to gene promoters to 'loosen' chromatin for access of transcription factors. Recently, three chromatin remodeling factors with roles in transcriptional regulation have also been shown to be present at sites of DNA double-strand breaks (DSBs) in yeast. These factors control different aspects of DSB repair, suggesting that chromatin remodeling constitutes a key mechanism to preserve genome integrity.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Nucleossomos/ultraestrutura , Trifosfato de Adenosina/química , Cromatina/química , Cromatina/metabolismo , Proteínas Fúngicas/química , Regulação da Expressão Gênica , Genoma Fúngico , Modelos Biológicos , Modelos Genéticos , Nucleossomos/metabolismo , Recombinação Genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Results Probl Cell Differ ; 41: 109-25, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16909893

RESUMO

A requirement of nuclear processes that use DNA as a substrate is the manipulation of chromatin in which the DNA is packaged. Chromatin modifications cause alterations of histones and DNA, and result in a permissive chromatin environment for these nuclear processes. Recent advances in the fields of DNA repair and chromatin reveal that both histone modifications and chromatin-remodeling complexes are essential for the repair of DNA lesions, such as DNA double strand breaks (DSBs). In particular, chromatin-modifying complexes, such as the INO80, SWR1, RSC, and SWI/SNF ATP-dependent chromatin-remodeling complexes and the NuA4 and Tip60 histone acetyltransferase complexes are implicated in DNA repair. The activity of these chromatin-modifying complexes influences the efficiency of the DNA repair process, which ultimately affects genome integrity and carcinogenesis. Thus, the process of DNA repair requires the cooperative activities of evolutionarily conserved chromatin-modifying complexes that facilitate the dynamic chromatin alterations needed during repair of DNA damage.


Assuntos
Cromatina/metabolismo , Reparo do DNA/fisiologia , Animais , Histonas/metabolismo , Humanos , Neoplasias/genética
14.
J Cell Biochem ; 97(4): 684-9, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16365876

RESUMO

Chromatin remodeling complexes have evolved to solve a very basic problem for eukaryotic cells accommodation of the genome to fit the dimensions of the nucleus without loss of access to the DNA molecule. In the nucleus, DNA is wrapped around histones to form nucleosomes and other higher order compact chromatin structures. Chromatin remodeling complexes enable highly regulated access to DNA sequences in the context of chromatin, and it is well known that these complexes are involved in regulation of transcription. However, gene expression is not the only process that occurs in the nucleus. DNA has to be replicated, recombined, and repaired. In this regard, it is notable that the recent discoveries have linked ATP-dependent remodeling complexes to DNA damage repair. These results have raised challenging questions about the possible versatility of chromatin remodeling complexes in other nuclear activities, particularly in DNA replication, since a number of recent studies have suggested a connection between this essential cellular process and chromatin remodeling. However, the chromatin remodeling events regulating DNA replication have not been extensively investigated. The aim of this prospect is to summarize recent studies that implicate chromatin remodeling in DNA replication and to address potential roles of chromatin remodeling at various stages of eukaryotic DNA replication.


Assuntos
Trifosfato de Adenosina/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/genética , Replicação do DNA , Nucleossomos/metabolismo , Animais , Cromatina/metabolismo , Replicação do DNA/genética , Proteínas de Ligação a DNA , Células Eucarióticas , Fase G1/fisiologia , Regulação da Expressão Gênica , Nucleossomos/genética , Origem de Replicação/fisiologia , Fase S/fisiologia , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Fatores de Transcrição/metabolismo
15.
Cell ; 119(6): 767-75, 2004 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-15607974

RESUMO

While the role of ATP-dependent chromatin remodeling in transcription is well established, a link between chromatin remodeling and DNA repair has remained elusive. We have found that the evolutionarily conserved INO80 chromatin remodeling complex directly participates in the repair of a double-strand break (DSB) in yeast. The INO80 complex is recruited to a HO endonuclease-induced DSB through a specific interaction with the DNA damage-induced phosphorylated histone H2A (gamma-H2AX). This interaction requires Nhp10, an HMG-like subunit of the INO80 complex. The loss of Nhp10 or gamma-H2AX results in reduced INO80 recruitment to the DSB. Finally, components of the INO80 complex show synthetic genetic interactions with the RAD52 DNA repair pathway, the main pathway for DSB repair in yeast. Our findings reveal a new role of ATP-dependent chromatin remodeling in nuclear processes and suggest that an ATP-dependent chromatin remodeling complex can read a DNA repair histone code.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Reparo do DNA/fisiologia , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/fisiologia , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Imunoprecipitação da Cromatina , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Histonas/genética , Mutação/genética , Ligação Proteica , Proteína Rad52 de Recombinação e Reparo de DNA , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica/genética
16.
Science ; 303(5656): 343-8, 2004 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-14645854

RESUMO

The conserved histone variant H2AZ has an important role in the regulation of gene expression and the establishment of a buffer to the spread of silent heterochromatin. How histone variants such as H2AZ are incorporated into nucleosomes has been obscure. We have found that Swr1, a Swi2/Snf2-related adenosine triphosphatase, is the catalytic core of a multisubunit, histone-variant exchanger that efficiently replaces conventional histone H2A with histone H2AZ in nucleosome arrays. Swr1 is required for the deposition of histone H2AZ at specific chromosome locations in vivo, and Swr1 and H2AZ commonly regulate a subset of yeast genes. These findings define a previously unknown role for the adenosine triphosphate-dependent chromatin remodeling machinery.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Cromatina/metabolismo , Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/isolamento & purificação , Catálise , Domínio Catalítico , Cromossomos Fúngicos/genética , DNA Fúngico/genética , DNA Fúngico/metabolismo , Dimerização , Perfilação da Expressão Gênica , Inativação Gênica , Genes Fúngicos , Histonas/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Telômero/genética , Transcrição Gênica
17.
Mol Cell ; 12(1): 147-55, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12887900

RESUMO

Actin-related proteins (Arps) and conventional actin are enigmatic components of many chromatin-remodeling enzyme complexes. The yeast INO80 ATP-dependent chromatin-remodeling complex contains stoichiometric amounts of Arp4, Arp5, Arp8, and actin. Here we have revealed functions of Arp5 and Arp8 by analysis of mutants. arp5 Delta and arp8 Delta mutants display an ino80 Delta phenotype. Purification of INO80 complexes from arp5 Delta and arp8 Delta cells shows that protein complexes remain intact but are compromised for INO80 ATPase activity, DNA binding, and nucleosome mobilization. The INO80 (arp8 Delta) complex is strikingly deficient, not only for the Arp8 subunit, but also for Arp4 and actin, suggesting an ordered assembly of Arps. Binding of Arp8 to the INO80 complex requires an N-terminal region of Ino80 adjacent to the conserved ATPase domain. GST-Arp8 binds preferentially to histones H3 and H4 in vitro, suggesting a histone chaperone function. These findings show direct involvement of Arps in the chromatin-remodeling process.


Assuntos
Trifosfato de Adenosina/metabolismo , Cromatina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Leveduras/genética , Leveduras/metabolismo , Actinas/genética , Actinas/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Células Cultivadas , Cromatina/genética , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histonas/genética , Substâncias Macromoleculares , Modelos Moleculares , Mutação/genética , Estrutura Terciária de Proteína/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
18.
Science ; 299(5603): 112-4, 2003 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-12434013

RESUMO

Eukaryotes use adenosine triphosphate (ATP)-dependent chromatin-remodeling complexes to regulate gene expression. Here, we show that inositol polyphosphates can modulate the activities of several chromatin-remodeling complexes in vitro. Inositol hexakisphosphate (IP6) inhibits nucleosome mobilization by NURF, ISW2, and INO80 complexes. In contrast, nucleosome mobilization by the yeast SWI/SNF complex is stimulated by inositol tetrakisphosphate (IP4) and inositol pentakisphosphate (IP5). We demonstrate that mutations in genes encoding inositol polyphosphate kinases that produce IP4, IP5, and IP6 impair transcription in vivo. These results provide a link between inositol polyphosphates, chromatin remodeling, and gene expression.


Assuntos
Trifosfato de Adenosina/metabolismo , Cromatina/metabolismo , Fosfatos de Inositol/metabolismo , Mio-Inositol-1-Fosfato Sintase/metabolismo , Proteínas Nucleares , Nucleossomos/metabolismo , Transdução de Sinais , Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Mio-Inositol-1-Fosfato Sintase/genética , Ácido Fítico/metabolismo , Ácido Fítico/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/metabolismo , Leveduras/genética , Leveduras/metabolismo
19.
Cell ; 111(5): 661-72, 2002 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-12464178

RESUMO

Organ size is precisely regulated during development, but the control mechanisms remain obscure. We have isolated a mutation in zebrafish, liebeskummer (lik), which causes development of hyperplastic embryonic hearts. lik encodes Reptin, a component of a DNA-stimulated ATPase complex. The mutation activates ATPase activity of Reptin complexes and causes a cell-autonomous proliferation of cardiomyocytes to begin well after progenitors have fashioned the primitive heart tube. With regard to heart growth, beta-catenin and Pontin, a DNA-stimulated ATPase that is often part of complexes with Reptin, are in the same genetic pathways. Pontin reduction phenocopies the cardiac hyperplasia of the lik mutation. Thus, the Reptin/Pontin ratio serves to regulate heart growth during development, at least in part via the beta-catenin pathway.


Assuntos
Coração/embriologia , Proteínas Nucleares/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Proteases Dependentes de ATP , Adenosina Trifosfatases/química , Adenosina Trifosfatases/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Cardiomegalia/embriologia , Cardiomegalia/etiologia , Cardiomegalia/genética , Proteínas de Transporte , Divisão Celular , Sequência Conservada , Proteínas do Citoesqueleto/fisiologia , Embrião não Mamífero , Ativação Enzimática , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico/fisiologia , Dados de Sequência Molecular , Miocárdio/citologia , Miocárdio/ultraestrutura , Proteínas Nucleares/genética , Mutação Puntual , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/fisiologia , Transativadores/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética , beta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA