Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Ther Med ; 27(6): 250, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38682113

RESUMO

Osteogenesis is a complex process of bone formation regulated by various factors, yet its underlying molecular mechanisms remain incompletely understood. The present study aimed to investigate the role of S100A16, a novel member of the S100 protein family, in the osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) and uncover a novel Smad4-mitogen-activated protein kinase (MAPK)/Jun N-terminal kinase (JNK) signaling axis. In the present study, the expression level of S100A16 in bone tissues and BMSCs from ovariectomized rats was evaluated and then the impact of S100A16 silencing on osteogenic differentiation was examined. Increased S100A16 expression was observed in bone tissues and BMSCs from ovariectomized rats, and S100A16 silencing promoted osteogenic differentiation. Further transcriptomic sequencing revealed that the Smad4 pathway was involved in S100A16 silencing-induced osteogenesis. The results of western blot analysis revealed that S100A16 overexpression not only downregulated Smad4 but also activated MAPK/JNK signaling, which was validated by treatment with MAPK and JNK inhibitors U0126 and SP600125. Overall, in the present study, the novel regulatory factors influencing osteogenic differentiation were elucidated and mechanistic insights that could aid in the development of targeted therapeutic strategies for patients with osteoporosis were provided.

2.
Front Plant Sci ; 13: 1048153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452109

RESUMO

Increasing atmospheric nitrogen (N) deposition has a profound impact on the ecosystem functions and processes. Fine root decomposition is an important pathway for the reentry of nutrients into the soil. However, the effect of N addition on root decomposition and its potential mechanism is not well understood with respect to root branch orders. In this study, we conducted a 30-month decomposition experiment of fine roots under different concentrations of N addition treatments (0, 30, 60, and 90 kg N ha-1 year-1, respectively) in a typical Pinus massoniana plantation in the Three Gorges Reservoir Area of China. In the early stage of decomposition (0-18 months), N addition at all concentrations promoted the decomposition of fine roots, and the average decomposition rates of order 1-2, order 3-4, order 5-6 fine roots were increased by 13.54%, 6.15% and 7.96% respectively. In the late stage of decomposition (18-30 months), high N addition inhibited the decomposition of fine root, and the average decomposition rates of order 1-2, order 3-4, order 5-6 fine roots were decreased by 58.35%, 35.43% and 47.56% respectively. At the same time, N addition promoted the release of lignin, carbon (C), N, and phosphorus (P) in the early-stage, whereas high N addition inhibited the release of lignin, C, N, and the activities of lignin-degrading enzyme (peroxidase and polyphenol oxidase) in the late-stage. The decomposition constant (k) was significantly correlated with the initial chemical quality of the fine roots and lignin-degrading enzyme activities. The higher-order (order 3-4 and order 5-6) fine roots decomposed faster than lower-order (order 1-2) fine roots due to higher initial cellulose, starch, sugar, C concentrations and higher C/N, C/P, lignin/N ratios and lower N, P concentrations. In addition, low N (30 kg N ha-1 year-1) treatments decreased soil organic matter content, whereas high N (90 kg N ha-1 year-1) treatment had the opposite effect. All the N treatments reduced soil pH and total P content, indicating that increased N deposition may led to soil acidification. Our findings indicated that the effect of N addition on decomposition varied with the decomposition stages. The decomposition difference between the lower-order and higher-order fine roots were controlled strongly by the initial chemical quality of the fine roots. This study provides new insights into understanding and predicting possible changes in plant root decomposition and soil properties in the future atmospheric N deposition increase scenarios.

3.
Ying Yong Sheng Tai Xue Bao ; 33(1): 42-50, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35224924

RESUMO

We examined the effects of nitrogen addition (0, 30, 60, and 90 kg N·hm-2·a-1) to soil microbial biomass, enzyme activities, and nutrient contents of the Pinus massoniana-Quercus variabilis mixed plantations in the Three Gorges Reservoir Area, with the aim to provide a theoretical basis for predicting soil carbon dynamics under the background of continuously increasing atmospheric nitrogen deposition in this area. The results showed that nitrogen addition at all levels led to a significant increase of the contents of organic carbon, total nitrogen, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and microbial biomass phosphorus (MBP) in the forest soil, while a decrease of soil pH-value, and no significant effect on the total phosphorus content. Nitrogen addition increased the activities of ß-1-4 glucosidase (BG), cellobiose hydrolase (CB), acid phosphatase (AP), N-acetylglucosaminosidase (NAG) and peroxidase (POD), while inhibited that of polyphenol oxidase (PPO). There was a significant seasonal variation in soil oxidase activities, in which the peroxidase activity was higher in May and August, and the polyphenol oxidase activity was the highest in August. Soil enzyme activities were significantly correlated with soil moisture and the contents of soil nutrients, MBC, MBN, and MBP. The variation of soil enzyme activities was caused by the comprehensive effects of multiple factors. The redundancy analysis (RDA) showed that the contents of total soil nitrogen and MBC were the main environmental factors driving soil enzyme activities. The continuous increase of atmosphere nitrogen deposition would lead to soil acidification and promote the turnover of soil organic carbon and nutrient cycling in the Pinus massoniana-Quercus variabilis mixed plantations of the study area.


Assuntos
Pinus , Quercus , Biomassa , Carbono/análise , China , Nitrogênio/análise , Solo , Microbiologia do Solo
4.
Bioresour Technol ; 337: 125476, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34320756

RESUMO

This paper proposed a novel method for modification of dolomite (Do) using the leaching solution derived from the spent ternary LIBs. During catalytic pyrolysis of biomass, the modified Do showed a good performance on both reducing the activation energy and upgrading the volatile products. The apparent activation energy was decreased from 201 to 180 kJ/mol for the cellulose pyrolysis, and it was decreased from 80 to 75 kJ/mol for the lignin pyrolysis. The cellulose pyrolysis with the modified Do could significantly promote the conversion of anhydrosugars into small-molecule components (e.g., ketones). Meanwhile, the Do modified by transition-metal (e.g., Mn, Co, Ni) oxides had a high catalytic activity in cracking phenols (main tar precursors) to hydrocarbons (e.g., aromatics) during the lignin pyrolysis. The modified Do inhibited the production of phenols (from 50% to 5.8%) and enhanced the production of hydrocarbons (from 0.6% to 30.3%).


Assuntos
Lítio , Pirólise , Biomassa , Carbonato de Cálcio , Catálise , Cromatografia Gasosa-Espectrometria de Massas , Magnésio
5.
Sci Total Environ ; 743: 140760, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32653719

RESUMO

The alkaline-earth-metal (AEM) has a good performance on modification of both bio-oil and biochar during biomass pyrolysis. In this work, the pyrolysis of rice husk (RH) in the presence of CaO, CaCO3, MgO and MgCO3 was comparatively studied for selecting an appropriate AEM additive to balance the qualities of pyrolytic products. Pyrolysis of RH with the AEM additives could decrease the acids content and increase the hydrocarbons content in bio-oil. Compared with the Ca-additives (i.e., CaO, CaCO3), the Mg-additives (i.e., MgO, MgCO3) were more beneficial for enhancing the hydrocarbons production. The addition of biochar to soil can significantly enhance the water retention. RHC-MgCO3 had a maximum water retention capacity, while RHC-MgO had a minimum water retention capacity due to its lowest specific surface area. Additionally, the Mg-modified biochar had a much higher nutrient (i.e., K+, PO43-) adsorption capacity. In particular, RHC-MgO with a lowest specific surface area had a highest PO43- adsorption capacity, which was evidenced by the adsorption of PO43- onto biochar mainly controlled by the chemisorption process. PO43- adsorbed in the RHC-MgO released rapidly indicating its low PO43- retention capacity. In general, MgCO3 would be an appropriate candidate that is used in pyrolysis of biomass for co-production of bio-oil and biochar composite with high capacities of water/nutrient adsorption and retention for soil amendment.


Assuntos
Pirólise , Solo , Adsorção , Biomassa , Carvão Vegetal , Metais , Óleos de Plantas , Polifenóis
6.
J Environ Manage ; 241: 53-58, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30981143

RESUMO

Phenol as a semi-volatile organic compound (SVOC) extensively presents in industrial wastewater. Moreover, it is a main compound of tar existing in the vapor phase from biomass pyrolysis or gasification. So far, most of works on the phenol adsorption by activated carbons have been conducted in the liquid phase. However, the adsorption of phenol in the gas phase has not been reported. This work aims to synthesize the hierarchically porous carbons from the unaltered and pelletized rice husk (RH) via a facile pyrolysis followed by the ball-milling-assisted KOH activation. Herein, the silica nanoparticles in RH acted as a self-template to remarkably increase specific surface areas and pores, thereby giving rise to the formation of hierarchically porous carbons, which showed a relatively high adsorption capacity (maximum value: 1919 mg/g) of phenol in the vapor phase. Generally, the process of phenol adsorption onto porous carbons in the gas phase followed with various interactions, including pore filling, electrostatic interaction, hydrophobic effect, and functional groups effect (e.g., π-π interaction). And the pseudo-second-order model could well describe the adsorption kinetic. It is noted that the pelletized RH was more favorable to develop the porous carbons with the hierarchically meso-microporous structures that could enhance the transfer of the phenol molecules via the outer layer and subsequent uptake by the adsorption sites on the inner layer. Further, the SVOC phenol was hard to volatilize under ambient conditions due to its relatively higher boiling point (181.7 °C), so the thermal desorption was a potential way to regenerate the spent activated biochars.


Assuntos
Oryza , Fenol , Adsorção , Fenóis , Porosidade
7.
Polymers (Basel) ; 10(6)2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-30966607

RESUMO

A novel polyethylene terephthalate nonwoven reinforced polypropylene composite separator (PET/PP) with high thermal stability and low thermal shrinkage characteristic is developed through a scalable production process. In the composite separator, the electronspun polyethylene terephthalate nonwoven layer improves the electrolyte affinity and can sustain as the barrier layer after the shutdown of the polypropylene layer. Due to its high ionic conductivity, the PET/PP separator shows an excellent discharge capacity. In addition, the superior thermal stability of the separator significantly enhances the safety performance of the separator. Considering the feasibility of the large-scale production of the PET/PP separator and its superior battery performance, we expect that the novel separator could be a promising alternative to the existing commercial separators.

8.
Environ Sci Technol ; 48(4): 2263-72, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24456468

RESUMO

This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.


Assuntos
Carvão Vegetal/química , Carvão Mineral/análise , Sulfeto de Hidrogênio/isolamento & purificação , Reciclagem , Enxofre/isolamento & purificação , Adsorção , Catálise , China , Resíduos Industriais/análise , Microscopia Eletrônica de Varredura , Oxirredução , Pressão , Espectrometria por Raios X , Fatores de Tempo , Ultrassom
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA