Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 1181, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29563511

RESUMO

The development of new methods for the direct transformation of methanol into two or multi-carbon compounds via controlled carbon-carbon coupling is a highly attractive but challenging goal. Here, we report the first visible-light-driven dehydrogenative coupling of methanol into ethylene glycol, an important chemical currently produced from petroleum. Ethylene glycol is formed with 90% selectivity and high efficiency, together with hydrogen over a molybdenum disulfide nanofoam-modified cadmium sulfide nanorod catalyst. Mechanistic studies reveal a preferential activation of C-H bond instead of O-H bond in methanol by photoexcited holes on CdS via a concerted proton-electron transfer mechanism, forming a hydroxymethyl radical (⋅CH2OH) that can readily desorb from catalyst surfaces for subsequent coupling. This work not only offers an alternative nonpetroleum route for the synthesis of EG but also presents a unique visible-light-driven catalytic C-H activation with the hydroxyl group in the same molecule keeping intact.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA