Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Transl Med ; 22(1): 391, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678297

RESUMO

BACKGROUND: Laminin subunit gamma-1 (LAMC1) is a major extracellular matrix molecule involved in the tumor microenvironment. Knowledge of the biological features and clinical relevance of LAMC1 in cancers remains limited. METHODS: We conducted comprehensive bioinformatics analysis of LAMC1 gene expression and clinical relevance in pan-cancer datasets of public databases and validated LAMC1 expression in glioma tissues and cell lines. The association and regulatory mechanism between hypoxia inducible factor-1α (HIF-1α) and LAMC1 expression were explored. RESULTS: LAMC1 expression in most cancers in The Cancer Genome Atlas (TCGA) including glioma was significantly higher than that in normal tissues, which had a poor prognosis and were related to various clinicopathological features. Data from the Chinese Glioma Genome Atlas also showed high expression of LAMC1 in glioma associated with poor prognoses. In clinical glioma tissues, LAMC1 protein was highly expressed and correlated to poor overall survival. LAMC1 knockdown in Hs683 glioma cells attenuated cell proliferation, migration, and invasion, while overexpression of LAMC1 in U251 cells leads to the opposite trend. Most TCGA solid cancers including glioma showed enhancement of HIF-1α expression. High HIF-1α expression leads to adverse prognosis in gliomas, besides, HIF-1α expression was positively related to LAMC1. Mechanistically, HIF-1α directly upregulated LAMC1 promotor activity. Hypoxia (2% O2)-treated Hs683 and U251 cells exhibited upregulated HIF-1α and LAMC1 expression, which was significantly attenuated by HIF-1α inhibitor YC-1 and accompanied by attenuated cell proliferation and invasion. CONCLUSIONS: High expression of LAMC1 in some solid tumors including gliomas suggests a poor prognosis. The hypoxic microenvironment in gliomas activates the HIF-1α/LAMC1 signaling, thereby promoting tumor progression. Targeted intervention on the HIF-1α/LAMC1 signaling attenuates cell growth and invasion, suggesting a new strategy for glioma treatment.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioma , Subunidade alfa do Fator 1 Induzível por Hipóxia , Laminina , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Prognóstico , Laminina/metabolismo , Laminina/genética , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Masculino , Reprodutibilidade dos Testes , Feminino , Movimento Celular/genética , Invasividade Neoplásica , Bases de Dados Genéticas , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética
3.
Cell Commun Signal ; 22(1): 51, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233839

RESUMO

The dynamic changes of RNA N6-methyladenosine (m6A) during cancer progression participate in various cellular processes. However, less is known about a possible direct connection between upstream regulator and m6A modification, and therefore affects oncogenic progression. Here, we have identified that a key enzyme in N4-acetylcytidine (ac4C) acetylation NAT10 is highly expressed in human osteosarcoma tissues, and its knockdown enhanced m6A contents and significantly suppressed osteosarcoma cell growth, migration and invasion. Further results revealed that NAT10 silence inhibits mRNA stability and translation of m6A reader protein YTHDC1, and displayed an increase in glucose uptake, a decrease in lactate production and pyruvate content. YTHDC1 recognizes differential m6A sites on key enzymes of glycolysis phosphofructokinase (PFKM) and lactate dehydrogenase A (LDHA) mRNAs, which suppress glycolysis pathway by increasing mRNA stability of them in an m6A methylation-dependent manner. YTHDC1 partially abrogated the inhibitory effect caused by NAT10 knockdown in tumor models in vivo, lentiviral overexpression of YTHDC1 partially restored the reduced stability of YTHDC1 caused by lentiviral depleting NAT10 at the cellular level. Altogether, we found ac4C driven RNA m6A modification can positively regulate the glycolysis of cancer cells and reveals a previously unrecognized signaling axis of NAT10/ac4C-YTHDC1/m6A-LDHA/PFKM in osteosarcoma. Video Abstract.


Assuntos
Citidina/análogos & derivados , Osteossarcoma , Fosfofrutoquinases , Humanos , Lactato Desidrogenase 5/metabolismo , Fosfofrutoquinases/metabolismo , Acetilação , RNA/metabolismo , Glicólise/genética , Osteossarcoma/patologia , Fosfofrutoquinase-1 Muscular/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Acetiltransferases N-Terminal/metabolismo
4.
Oncogene ; 43(5): 341-353, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040806

RESUMO

Doxorubicin and platinum are widely used in the frontline treatment of osteosarcoma, but resistance to chemotherapy limits its curative effect. Here, we have identified that METTL1 mediated N7-Methyladenosine (m7G) low expressed in osteosarcoma tissues, plays a critical oncogenic role, and enhances osteosarcoma chemosensitivity in osteosarcoma. Mechanistically, AlkAniline-Seq data revealed that Ferritin heavy chain (FTH1), the main component of ferritin, which is crucial for iron homeostasis and the inhibition of lipid peroxidation, is one of the top 10 genes with the most significant change in m7G methylation sites mediated by METTL1 in human osteosarcoma cells. Interestingly, METTL1 significantly increased the expression of FTH1 at the mRNA level but was remarkably suppressed at the protein level. We then identified primary (pri)-miR-26a and pri-miR-98 in the Top 20 m7G-methylated pri-miRNAs with highly conserved species. Further results confirmed that METTL1 enhances cell ferroptosis by targeting FTH1 and primary (pri)-miR-26a, promoting their maturity by enhancing RNA stability dependent on m7G methylation. The increase of mature miR-26a-5p that resulted from METTL1 overexpression could further target FTH1 mRNA and eliminate FTH1 translation efficiency. Moreover, the reduction of FTH1 translation dramatically increases cell ferroptosis and promotes the sensitivity of osteosarcoma cells to chemotherapy drugs. Collectively, our study demonstrates the METTL1/pri-miR-26a/FTH1 axis signaling in osteosarcoma and highlights the functional importance of METTL1 and m7G methylation in the progression and chemotherapy resistance of osteosarcoma, suggesting that reprogramming RNA m7G methylation as a potential and promising strategy for osteosarcoma treatment.


Assuntos
Neoplasias Ósseas , Ferroptose , MicroRNAs , Osteossarcoma , Humanos , Ferroptose/genética , MicroRNAs/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , RNA Mensageiro , Ferritinas , Oxirredutases/metabolismo
5.
Signal Transduct Target Ther ; 8(1): 121, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36967385

RESUMO

Heart failure (HF) patients in general have a higher risk of developing cancer. Several animal studies have indicated that cardiac remodeling and HF remarkably accelerate tumor progression, highlighting a cause-and-effect relationship between these two disease entities. Targeting ferroptosis, a prevailing form of non-apoptotic cell death, has been considered a promising therapeutic strategy for human cancers. Exosomes critically contribute to proximal and distant organ-organ communications and play crucial roles in regulating diseases in a paracrine manner. However, whether exosomes control the sensitivity of cancer to ferroptosis via regulating the cardiomyocyte-tumor cell crosstalk in ischemic HF has not yet been explored. Here, we demonstrate that myocardial infarction (MI) decreased the sensitivity of cancer cells to the canonical ferroptosis activator erastin or imidazole ketone erastin in a mouse model of xenograft tumor. Post-MI plasma exosomes potently blunted the sensitivity of tumor cells to ferroptosis inducers both in vitro in mouse Lewis lung carcinoma cell line LLC and osteosarcoma cell line K7M2 and in vivo with xenograft tumorigenesis model. The expression of miR-22-3p in cardiomyocytes and plasma-exosomes was significantly upregulated in the failing hearts of mice with chronic MI and of HF patients as well. Incubation of tumor cells with the exosomes isolated from post-MI mouse plasma or overexpression of miR-22-3p alone abrogated erastin-induced ferroptotic cell death in vitro. Cardiomyocyte-enriched miR-22-3p was packaged in exosomes and transferred into tumor cells. Inhibition of cardiomyocyte-specific miR-22-3p by AAV9 sponge increased the sensitivity of cancer cells to ferroptosis. ACSL4, a pro-ferroptotic gene, was experimentally established as a target of miR-22-3p in tumor cells. Taken together, our findings uncovered for the first time that MI suppresses erastin-induced ferroptosis through releasing miR-22-3p-enriched exosomes derived from cardiomyocytes. Therefore, targeting exosome-mediated cardiomyocyte/tumor pathological communication may offer a novel approach for the ferroptosis-based antitumor therapy.


Assuntos
Exossomos , Ferroptose , Insuficiência Cardíaca , MicroRNAs , Infarto do Miocárdio , Neoplasias , Humanos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ferroptose/genética , Exossomos/metabolismo , Infarto do Miocárdio/genética , Neoplasias/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia
6.
BMC Cancer ; 23(1): 135, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759775

RESUMO

BACKGROUND: Stonin1 (STON1) is an endocytic protein but its role in cancer remains unclear. Here, we investigated the immune role of STON1 in kidney renal clear cell carcinoma (KIRC). METHODS: We undertook bioinformatics analyses of the expression and clinical significance of STON1 in KIRC through a series of public databases, and the role of STON1 in the tumor microenvironment and the predictive value for immunotherapy and targeted treatment in KIRC were identified with R packages. STON1 expression was validated in clinical KIRC tissues as well as in KIRC and normal renal tubular epithelial cells. RESULTS: Through public databases, STON1 mRNA was found to be significantly downregulated in KIRC compared with normal controls, and decreased STON1 was related to grade, TNM stage, distant metastasis and status of KIRC patients. Compared with normal controls, STON1 was found to be downregulated in KIRC tissues and cell lines. Furthermore, OncoLnc, Kaplan-Meier, and GEPIA2 analyses also suggested that KIRC patients with high STON1 expression had better overall survival. The high STON1 group with enriched immune cells had a more favorable prognosis than the low STON1 group with decreased immune cells. Single sample Gene Set Enrichment Analysis and Gene Set Variation Analysis indicated that STON1 creates an immune non-inflamed phenotype in KIRC. Moreover, STON1 was positively associated with mismatch repair proteins and negatively correlated with tumor mutational burden. Furthermore, Single sample Gene Set Enrichment Analysis algorithm and Pearson analysis found that the low STON1 group was more sensitive to immune checkpoint blockage whereas the high STON1 group was relatively suitable for targeted treatment. CONCLUSIONS: Decreased STON1 expression in KIRC leads to clinical progression and poor survival. Mechanically, low STON1 expression is associated with an aberrant tumor immune microenvironment. Low STON1 is likely to be a favorable indicator for immunotherapy response but adverse indicator for targeted therapeutics in KIRC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Microambiente Tumoral/genética , Carcinoma de Células Renais/genética , Imunoterapia , Neoplasias Renais/genética , Rim , Prognóstico
7.
Medicine (Baltimore) ; 102(8): e32994, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36827046

RESUMO

RATIONALE: Adenosquamous carcinoma of the scrotum is a rare cancer associated with poor prognosis. It is diagnosed through the presence of both adenocarcinoma and squamous cell carcinoma. PATIENT CONCERNS: It may be difficult to diagnose at early stages and may have poor survival. DIAGNOSES: We report a case of adenosquamous carcinoma of the scrotum in a 58-year-old male patient who presented with left scrotal mass for >1 year. INTERVENTIONS: This is the first case in the literature of primary adenosquamous carcinoma of the scrotum managed successfully with surgery and post-surgery chemotherapy and radiotherapy. OUTCOMES: The patient remained disease-free for 10 months postoperatively. LESSONS: The surgery treatment combined with postoperative radiotherapy and chemotherapy can improve the survival of adenosquamous carcinoma.


Assuntos
Adenocarcinoma , Carcinoma Adenoescamoso , Carcinoma de Células Escamosas , Masculino , Humanos , Pessoa de Meia-Idade , Carcinoma Adenoescamoso/patologia , Escroto/patologia , Carcinoma de Células Escamosas/patologia , Prognóstico , Adenocarcinoma/patologia
8.
Front Mol Biosci ; 9: 988777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188228

RESUMO

Background: Laminin subunit gamma 1 (LAMC1) protein is associated with tumor cell invasion and metastasis. However, its role in kidney cancer remains unclear. In this work, we sought to probe the expression as well as its carcinogenic mechanisms of LAMC1 in kidney renal papillary cell carcinoma (KIRP) and kidney renal clear cell carcinoma (KIRC). Methods: Public databases including TIMER, Oncomine, UALCAN, TISIDB, TCGA, Kaplan-Meier plotter, UCSC Xena, cBioPortal, SurvivalMeth, KEGG, GeneMANIA, Metascape, GSCALite and GDSC were adopted, and the expression, clinical pathological correlation, prognostic signatures, dominant factors influencing LAMC1 expression, DNA methylation levels, gene mutations, copy number variations, functional networks, and drug sensitivity were analyzed. Expression of LAMC1 protein in clinical KIRP and KIRC was validated using tissue array. Results: LAMC1 expression in KIRP and KIRC were significantly higher than those in normal tissues. High LAMC1 expression indicated poor overall survival in KIRP patients and better overall survival in KIRC patients. Through the univariate and multivariate Cox analysis, we found that high LAMC1 expression was a potential independent marker for poor prognosis in KIRP, however it implied a better prognosis in KIRC by univariate Cox analysis. In addition, the LAMC1 expression in KIRP and KIRC was negatively correlated with methylation levels of LAMC1 DNA. Interestingly, LAMC1 expression was positively correlated with the infiltration of CD8+ T cells, dendritic cells and neutrophils in KIRP; however, it was positively correlated with the infiltration of CD4+ T cells, macrophages and neutrophils but negatively correlated with B cells in KIRC. Moreover, high level of CD8+ T cells is beneficial for KIRC prognosis but opposite for KIRP. LAMC1 may participate in signaling pathways involved in formation of adherens junction and basement membrane in KIRP and KIRC, and the high expression of LAMC1 is resistant to most drugs or small molecules of the Genomics of Drug Sensitivity in Cancer database. Conclusion: Enhanced LAMC1 expression suggests a poor prognosis in KIRP while a better prognosis in KIRC, and these opposite prognostic signatures of LAMC1 may be related to different immune microenvironments.

9.
J Int Med Res ; 50(9): 3000605221121968, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36129883

RESUMO

We report a case of a 50-year-old woman presenting with a solid nodule in each lung. She was previously suspected of having lung cancer and distant pulmonary metastasis on the basis of imaging findings. Surgical pathology revealed that the left lung nodule was adenocarcinoma, but the contralateral nodule was papillary thyroid carcinoma (PTC). We subsequently performed total thyroidectomy, and the histological findings of the resected specimen showed no suspicious tumor tissue. Overall, the results led to a diagnosis of ectopic intrapulmonary PTC with synchronous lung adenocarcinoma. Ectopic intrapulmonary PTC is a rare but true phenomenon that may be easily mistaken for pulmonary metastasis in daily practice. It is important to improve the recognition of ectopic intrapulmonary thyroid tumors to avoid misdiagnosis.


Assuntos
Carcinoma Papilar , Neoplasias Pulmonares , Neoplasias da Glândula Tireoide , Carcinoma Papilar/diagnóstico por imagem , Carcinoma Papilar/cirurgia , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Pessoa de Meia-Idade , Câncer Papilífero da Tireoide/diagnóstico , Câncer Papilífero da Tireoide/cirurgia , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/cirurgia , Tireoidectomia
10.
Stem Cells Transl Med ; 11(9): 987-1001, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35980318

RESUMO

The development of osteoporosis is often accompanied by autophagy disturbance, which also causes new osteoblast defects from bone marrow mesenchymal stem cells (BMSCs). However, the underlying molecular mechanisms are still not fully understood. Methyltransferase-like 14 (METTL14) is the main enzyme for N6-methyladenosine (m6A), the most prevalent internal modification in mammalian mRNAs, and it has been implicated in many bioprocesses. Herein, we demonstrate that METTL14 plays a critical role in autophagy induction and hinders osteoporosis process whose expression is decreased both in human osteoporosis bone tissue and ovariectomy (OVX) mice. In vivo, METTL14+/- knockdown mice exhibit elevated bone loss and impaired autophagy similar to the OVX mice, while overexpression of METTL14 significantly promotes bone formation and inhibits the progression of osteoporosis caused by OVX surgery. In vitro, METTL14 overexpression significantly enhances the osteogenic differentiation ability of BMSCs through regulating the expression of beclin-1 depending on m6A modification and inducing autophagy; the opposite is true with METTL14 silencing. Subsequently, m6A-binding proteins IGF2BP1/2/3 recognize m6A-methylated beclin-1 mRNA and promote its translation via mediating RNA stabilization. Furthermore, METTL14 negatively regulates osteoclast differentiation. Collectively, our study reveals the METTL14/IGF2BPs/beclin-1 signal axis in BMSCs osteogenic differentiation and highlights the critical roles of METTL14-mediated m6A modification in osteoporosis.


Assuntos
Autofagia , Células-Tronco Mesenquimais , Metiltransferases , Osteoporose , Animais , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular/fisiologia , Feminino , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Osteogênese/fisiologia , RNA Mensageiro/metabolismo
12.
Cell Death Dis ; 12(1): 60, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431791

RESUMO

ALKBH5 is the main enzyme for m6A-based demethylation of RNAs and it has been implicated in many biological and pathophysiological processes. Here, we aimed to explore the potential involvement of ALKBH5 in osteosarcoma and decipher the underlying cellular/molecular mechanisms. We discovered downregulated levels of demethylase ALKBH5 were correlated with increased m6A methylation in osteosarcoma cells/tissues compared with normal osteoblasts cells/tissues. ALKBH5 overexpression significantly suppressed osteosarcoma cell growth, migration, invasion, and trigged cell apoptosis. In contrast, inhibition of ALKBH5 produced the opposite effects. Whereas ALKBH5 silence enhanced m6A methylations of pre-miR-181b-1 and YAP-mRNA exerting oncogenic functions in osteosarcoma. Moreover, upregulation of YAP or downregulation of mature miR-181b-5p displayed a remarkable attenuation of anti-tumor activities caused by ALKBH5. Further results revealed that m6A methylated pre-miR-181b-1 was subsequently recognized by m6A-binding protein YTHDF2 to mediate RNA degradation. However, methylated YAP transcripts were recognized by YTHDF1 to promote its translation. Therefore, ALKBH5-based m6A demethylation suppressed osteosarcoma cancer progression through m6A-based direct/indirect regulation of YAP. Thus, ALKBH5 overexpression might be considered a new approach of replacement therapy for osteosarcoma treatment.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Epigênese Genética/genética , Osteossarcoma/genética , Progressão da Doença , Humanos , Transdução de Sinais
13.
Stem Cell Rev Rep ; 17(4): 1374-1389, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33506343

RESUMO

Epigenetic modification is a crucial mechanism affecting the biological function of stem cells. SETD4 is a histone methyltransferase, and its biological role in bone marrow mesenchymal stem cells (BMSCs) is currently unknown. In this study, we employed CRISPR/Cas9 technology edited mouse model and found that SETD4 knockout significantly promoted the proliferation of BMSCs, impaired BMSCs migration and differentiation potentials of lineages of cardiacmyocyte and smooth muscle cell, and even the angiogenesis via paracrine of VEGF. Through Reduced Representation Bisulfite Sequencing (RRBS) method, we verified that the overall genomic methylation of BMSCs in the SETD4 knockout group only was decreased by 0.47 % compared with wild type. However, the changed genomic methylation covers a total of 96,331 differential methylated CpG sites and 8,692 differential methylation regions (DMRs), with part of them settled in promoter regions. Bioinformatic analysis revealed that differential CpG islands and DMRs in promoter impacted 270 GO functions and 34 KEGG signaling pathways, with some closely related to stem cell biology. Mechanismly, SETD4 knockout inhibited sets of monomethylases and dimethylases for histone lysine, along with significant changes in some factors including Nkx2.5, Gata4, Gli2, Grem2, E2f7, Map7, Nr2f2 and Shox2 that associated with stem cell biology. These results are the first to reveal that even though SETD4 changes the genome's overall methylation to a limited extent in BMSCs, it still affects the numerous cellular functions and signaling pathways, implying SETD4-altered genomic methylation serves a crucial molecular role in BMSCs' biological functions.


Assuntos
Metilação de DNA , Células-Tronco Mesenquimais , Metiltransferases/fisiologia , Animais , Sistemas CRISPR-Cas , Diferenciação Celular/genética , Proliferação de Células/genética , Técnicas de Inativação de Genes , Células-Tronco Mesenquimais/citologia , Camundongos , Miócitos Cardíacos/citologia , Miócitos de Músculo Liso/citologia , Neovascularização Fisiológica
14.
Int J Mol Med ; 46(3): 1225-1238, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32705255

RESUMO

RhoE/Rnd3 is an atypical member of the Rho superfamily of proteins, However, the global biological function profile of this protein remains unsolved. In the present study, a RhoE­knockout H9C2 cardiomyocyte cell line was established using CRISPR/Cas9 technology, following which differentially expressed genes (DEGs) between the knockout and wild­type cell lines were screened using whole genome expression gene chips. A total of 829 DEGs, including 417 upregulated and 412 downregulated, were identified using the threshold of fold changes ≥1.2 and P<0.05. Using the ingenuity pathways analysis system with a threshold of ­Log (P­value)>2, 67 canonical pathways were found to be enriched. Many of the detected signaling pathways, including that of oncostatin M signaling, were found to be associated with the inflammatory response. Subsequent disease and function analysis indicated that apart from cardiovascular disease and development function, RhoE may also be involved in other diseases and function, including organismal survival, cancer, organismal injury and abnormalities, cell­to­cell signaling and interaction, and molecular transport. In addition, 885 upstream regulators were enriched, including 59 molecules that were predicated to be strongly activated (Z­score >2) and 60 molecules that were predicated to be significantly inhibited (Z­scores <­2). In particular, 33 regulatory effects and 25 networks were revealed to be associated with the DEGs. Among them, the most significant regulatory effects were 'adhesion of endothelial cells' and 'recruitment of myeloid cells' and the top network was 'neurological disease', 'hereditary disorder, organismal injury and abnormalities'. In conclusion, the present study successfully edited the RhoE gene in H9C2 cells using CRISPR/Cas9 technology and subsequently analyzed the enriched DEGs along with their associated canonical signaling pathways, diseases and functions classification, upstream regulatory molecules, regulatory effects and interaction networks. The results of the present study should facilitate the discovery of the global biological and functional properties of RhoE and provide new insights into role of RhoE in human diseases, especially those in the cardiovascular system.


Assuntos
Redes Reguladoras de Genes , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Proteínas rho de Ligação ao GTP/genética , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Edição de Genes , Perfilação da Expressão Gênica , Humanos , Ratos
15.
Nan Fang Yi Ke Da Xue Xue Bao ; 39(10): 1191-1199, 2019 Oct 30.
Artigo em Chinês | MEDLINE | ID: mdl-31801714

RESUMO

OBJECTIVE: To analyze the effects of alterations in the expressions of methyltransferase SETD2 on protein expression profiles in human nasopharyngeal carcinoma (NPC) cells and enrich the differential signaling pathways. METHODS: The total protein was extracted from SETD2-knockout cell line CNE1SETD2-KO and the wild-type cell line CNE1WT, and the differentially expressed proteins were screened by tandem mass tag (TMT) labeled protein quantification technique and tandem mass spectrometry. GO analysis was used to annotate and enrich the differentially expressed proteins, and the KEGG database was used to enrich and analyze the pathways of the differential proteins. RESULTS: With a fold change (FC)≥1.2 and P < 0.05 as the screening standard, 2049 differentially expressed proteins were identified in CNE1SETD2-KO cells, among which 904 were up-regulated and 1145 were down-regulated. GO functional annotation results indicated that SETD2 knockout caused characteristic changes in multiple biological processes (cell processes and regulation, cell movement, metabolic processes, and biosynthesis of cellular components), molecular functions (catalytic activity and molecular binding, transcription factor activity), and cellular components (cell membrane, organelle, macromolecular complex). KEGG analysis showed that the differentially expressed proteins were involved in an array of signaling pathways closely related to tumors, including MAPK, PI3K-Akt, Ras, Rap1, mTOR, Hippo, HIF-1, Wnt, AMPK, FoxO, ErbB, P53 and JAK-STAT. CONCLUSIONS: SETD2 knockout significantly changes the protein expression characteristics of NPC cells and affects a number of signal pathways closely related to tumors. The results provide evidence for investigation of the pathogenesis and therapeutic target screening of NPC.


Assuntos
Histona-Lisina N-Metiltransferase/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Proteômica , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Humanos
16.
BMC Cancer ; 19(1): 262, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30902084

RESUMO

BACKGROUND: Epithelial-mesenchymal transition (EMT) may be one of the reasons for the failure in some clinical trials regarding histone deacetylase inhibitors (HDACIs)-treated solid tumors. We investigated the effects of a pan-HDACI trichostatin A (TSA) on the proliferation and EMT of nasopharyngeal carcinoma (NPC) cells. METHODS: Poorly-differentiated NPC cell line CNE2 and undifferentiated C666-1 were treated with various concentrations of TSA, the cell viability was assessed by CCK-8 assay, the morphology was photographed, and the mRNA level of HDACs was assessed by semiquantitative PCR. After determination the cell cycle distributions, cells were subjected to western blotting analysis of cell cycle and EMT-associated genes expression. And the changes in migration ability were assessed by transwell migration assay and scratch wound healing assay. Finally, histone deacetylases activator ITSA-1 was used to assess the reverse of TSA-induced changes in NPC cells. RESULTS: TSA inhibited the proliferation of CNE2 and C666-1 cells in a concentration-dependent manner and arrested the cell cycle at G1 phases. TSA reduced PCNA, cyclin D1, cyclin E1, CDK2, p16 and p21 expressions and stimulated CDK6 levels. TSA stimulation for 48 h could effectively induce the EMT in CNE2 and C666-1 cells, which showed an increase of spindle-like cells and promoted expression of Vimentin and Snail1 expression in a concentration-dependent manner. Surprisingly, this short period of TSA treatment that induced EMT also impeded the migration ability of CNE2 and C666-1 cells. Interestingly, ITSA-1 rescued TSA-impeded CNE2 and C666-1 cells' proliferation, migration and HDACs expression, also re-induced the cells to turn into epithelial cell phenotypes. CONCLUSIONS: These results indicate that short-term stimulation of TSA effectively inhibits cell proliferation and induce EMT-like changes in NPC cells but not increase its invasion ability.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Ácidos Hidroxâmicos/uso terapêutico , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/patologia , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Fatores de Tempo
17.
Onco Targets Ther ; 12: 1137-1146, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809095

RESUMO

BACKGROUND: Epstein-Barr virus-encoded LMP1 plays a critical role in the carcinogenesis of nasopharyngeal carcinoma (NPC), but the mechanism remains elusive. We aimed to analyze the expression and clinical pathological significance of provirus integration site for Moloney murine leukemia virus 1 (Pim1) in clinical NPC, and to elucidate the effect of LMP1 on Pim1 expression and its mechanism. METHODS: Immunohistochemical staining was used to detect the expression of Pim1 in clinical NPC tissues and control nasopharyngeal chronic inflammation (NPI) tissues, and the correlation between Pim1 and clinical parameters of NPC patients was analyzed. The LMP1 stable expression cell line CNE1-LMP1-OV was constructed through infecting the well-differentiated nasopharyngeal carcinoma cells CNE1 with LMP1 overexpressing lentivirus. Then the in vivo experiments were conducted. RESULTS: Among 89 NPC patients, 48 cases (53.93%) were positive for Pim1, while only one case was Pim1 positive in 15 NPI controls (6.67%). Pim1 expression was not correlated with gender, age, smoking status and clinical classification of NPC patients, but positively correlated with T, N and M classification. CNE1-LMP1-OV cell line was successfully established, which displayed a higher cell proliferation ability and Pim1 expression. NF-κB inhibitor PDTC, PKC inhibitor GF109203X and STAT3 inhibitor Stattic significantly attenuated LMP1-induced Pim1 expression, and while AP-1 inhibitor SR11302 showed no inhibitory effect. Interestingly, Pim1 inhibitor quercetagetin significantly inhibited the proliferation of CNE1-LMP1-OV cells. CONCLUSION: LMP1 mediates Pim1 expression through NF-κB, PKC and STAT3 signaling, which promotes the proliferation of NPC cells and participate in the clinical progression of NPC.

18.
Oncotarget ; 8(51): 88320-88331, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29179437

RESUMO

Serine/threonine kinase proviral integration site for Moloney murine leukemia virus 1 (Pim-1) plays an essential role in arterial wall cell proliferation and associated vascular diseases, including pulmonary arterial hypertension and aortic wall neointima formation. Here we tested a role of Pim-1 in high-glucose (HG)-mediated vascular smooth muscle cell (VSMC) proliferation. Pim-1 and proliferating cell nuclear antigen (PCNA) expression levels in arterial samples from streptozotocin-induced hyperglycemia rats were increased, compared with their weak expression in normoglycemic groups. In cultured rat VSMCs, HG led to transient Pim-1 expression decline, followed by sustained expression increase at both transcriptional and translational levels. Immunoblot analysis demonstrated that HG increased the expression of the 33-kDa isoform of Pim-1, but at much less extent to its 44-kDa plasma membrane isoform. D-glucose at a concentration of 25 mmol/L showed highest activity in stimulating Pim-1 expression. Both Pim-1 inhibitor quercetagetin and STAT3 inhibitor stattic significantly attenuated HG-induced VSMC proliferation and arrested cell cycle progression at the G1 phase. Quercetagetin showed no effect on Pim-1 expression but decreased the phosphorylated-Bad (T112)/Bad ratio in HG-treated VSMCs. However, stattic decreased phosphorylated-STAT3 (Y705) levels and caused transcriptional and translational down-regulation of Pim-1 in HG-treated VSMCs. Our findings suggest HG-mediated Pim-1 expression contributes to VSMC proliferation, which may be partly due to the activation of STAT3/Pim-1 signaling.

19.
Sci Rep ; 7(1): 4593, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28676695

RESUMO

Our previous work reported the association between two single nucleotide polymorphisms (SNPs) in PIN1 promoter and nasopharyngeal carcinoma (NPC) risk with a small sample size in a low incidence area. This study investigated the association between the two SNPs and NPC risk in 733 patients and 895 controls from a high incidence area. The results indicated the genotype and allele frequencies of -842G > C and -667C > T were both significantly different between patients and controls even using the resampling statistics. The -842GC and -667TT genotypes showed a significantly increased risk of NPC (OR = 1.977, 95% CI = 1.339-2.919, P = 0.001 and OR = 1.438, 95% CI = 1.061-1.922, P = 0.019, respectively). Compared to the most common -842G-667C haplotype, -842G-667T haplotype and -842C-667C haplotype showed a significantly increased risk of NPC (OR = 1.215, 95% CI = 1.053-1.402, P = 0.008 and OR = 2.268, 95% CI = 1.530-3.362, P = 0.001, respectively). Further reporter gene expression suggested that variant -842C-667C and -842G-667T were associated with an enhanced transcriptional activity. In conclusion, our findings suggest that -842G > C and -667C > T in PIN1 promoter are associated with NPC risk; as well as the promoter activity is mediated by functional PIN1 variants.


Assuntos
Povo Asiático/genética , Peptidilprolil Isomerase de Interação com NIMA/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas
20.
Sci Rep ; 7: 42507, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198387

RESUMO

Formin-like 3 (FMNL3) plays a crucial role in cytoskeletal mediation and is potentially a biomarker for cell migration; however, its role in cancer metastasis remains unknown. In this study, we found elevated FMNL3 protein expression in clinical nasopharyngeal carcinoma (NPC) tissues. FMNL3 expression positively correlated to the clinical stage, T (tumour), N (lymph node metastasis) and M (distant metastasis) classification of NPC patients. Moreover, FMNL3 positively correlated to Vimentin expression and negatively correlated to E-cadherin expression in clinical NPC samples. In vitro experiments showed that FMNL3 expression was inversely related to NPC cell differentiation status. Overexpression of FMNL3 led to epithelial-to-mesenchymal transition (EMT) in well differentiated CNE1 cells. TGF-ß1-treated poorly differentiated CNE2 cells showed changes in EMT accompanied by enhanced FMNL3 expression and cell migration. On the contrary, knockdown of FMNL3 partially attenuated the TGF-ß1-promoted CNE2 cell migration, together with associated changes in EMT markers. Finally, knockdown of FMNL3 also weakened EMT in tumours in xenographs. Our study indicates for the first time that TGF-ß1/FMNL3 signalling may be a novel mechanism mediating EMT in NPC, which is closely associated with NPC metastasis.


Assuntos
Carcinoma/genética , Neoplasias Nasofaríngeas/genética , Proteínas/genética , Adulto , Idoso , Biomarcadores , Caderinas/metabolismo , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Forminas , Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Proteínas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA