Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 165: 112531, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869530

RESUMO

Mango is one of the most economically important fruit; however, the gene regulatory mechanism associated with ripening and quality changes during storage remains largely unclear. This study explored the relationship between transcriptome changes and postharvest mango quality. Fruit quality patterns and volatile components were obtained using headspace gas chromatography and ion-mobility spectrometry (HS-GC-IMS). The changes in mango peel and pulp transcriptome were analyzed during four stages (pre-harvesting, harvesting, maturity, and overripe stages). Based on the temporal analysis, multiple genes involved in the biosynthesis of secondary metabolites were upregulated in both the peel and pulp during the mango ripening process. Moreover, cysteine and methionine metabolism related to ethylene synthesis were upregulated in the pulp over time. Weighted gene co-expression network analysis (WGCNA) further showed that the pathways of pyruvate metabolism, citrate cycle, propionate metabolism, autophagy, and SNARE interactions in vesicular transport were positively correlated with the ripening process. Finally, a regulatory network of important pathways from pulp to peel was constructed during the postharvest storage of mango fruit. The above findings provide a global insight into the molecular regulation mechanisms of postharvest mango quality and flavor changes.


Assuntos
Redes Reguladoras de Genes , Mangifera , Animais , Frutas , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Aves
2.
Food Chem ; 405(Pt A): 134804, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36356363

RESUMO

Processing conditions can change the compositions and microstructures of polysaccharides, resulting in favorable and unfavorable effects on their chemical characteristics and bioactivites. Here, this study comparatively evaluated the effects of the commonly used hot water, alkaline, acidic, enzymatic, ultrasonic and hot water-alkaline extractions on the structural features and antioxidant and hypoglycemic properties of pitaya stem polysaccharides. Nuclear magnetic resonance spectroscopy showed six polysaccharides had similar glycosyl types. Scanning electron microscopy exhibited the surface morphology of the extracted six polysaccharides differed significantly. Polysaccharide obtained by hot water showed better antioxidant and hypoglycemic properties than that of the other polysaccharides. These data suggested that alkaline, acidic, enzymatic, ultrasonic and hot water-alkaline extractions have various influences on the degradation of polysaccharides without varying the major structure in comparison with hot water extraction. Additionally, monosaccharide composition and molecular weight of polysaccharides are two chief factors affecting the bioactivity of pitaya stem polysaccharides.


Assuntos
Antioxidantes , Hipoglicemiantes , Antioxidantes/farmacologia , Antioxidantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Fracionamento Químico/métodos , Polissacarídeos/farmacologia , Polissacarídeos/química , Peso Molecular , Água/química
3.
Food Chem ; 377: 131950, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34998155

RESUMO

In this study, colloidal complexes were prepared from bovine lactoferrin (BLF) and tannic acid (TA) and then their ability to form and stabilize foams was characterized. The molecular interactions between BLF and TA were studied using fluorescence and molecular docking analysis, which suggested that hydrophobic forces were primarily involved in holding the complexes together. The production of colloidal BLF-TA complexes was supported by increases in turbidity and mean particle diameter, quenching of intrinsic fluorescence, decrease in surface hydrophobicity, and change in conformation. When used alone, BLF exhibited good foam formation but poor foam stability properties. In contrast, BLF-TA complexes exhibited good foam stability but poor foamability properties. The change in foaming properties of the proteins was closely related to their interactions with the polyphenols. These findings may be useful for the development of novel functional ingredients to construct food foams with good physicochemical and nutritional attributes.


Assuntos
Polifenóis , Taninos , Interações Hidrofóbicas e Hidrofílicas , Lactoferrina/metabolismo , Simulação de Acoplamento Molecular
4.
Food Sci Nutr ; 9(2): 888-899, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33598172

RESUMO

Fresh-cut lettuce has a short shelf-life due to enzymatic browning and oxidative senescence. The present study investigated effects of polysaccharide-based edible coatings (alginate, chitosan, and carrageenan) on enzymatic browning and antioxidant defense system of fresh-cut lettuces during cold storage (4°C) for 15 days. The results showed that three coatings could inhibit enzymatic browning through maintaining total phenolics (TP) content and decreasing polyphenol oxidase (PPO) and phenylalanine ammonialyase (PAL) activities. These coatings also reduced phospholipase D (PLD) and lipoxygenase (LOX) activities, lowered malondialdehyde (MDA) content, and enhanced antioxidant enzymes (superoxide dismutase, SOD; peroxidase, POD; catalase, CAT; ascorbate peroxidase, APX) activities. Besides, all coatings positively affected sensory properties of fresh-cut lettuces after 3 days storage. Additionally, among three coating treatments, chitosan coating had the most positive effects on quality of fresh-cut lettuce and was the most suitable coating for retarding enzymatic browning and alleviating membrane oxidative damage. These results indicated that polysaccharide-based edible coatings were helpful to maintain quality, inhibit enzymatic browning, and postpone senescence of fresh-cut lettuce.

5.
Food Sci Nutr ; 8(2): 1284-1294, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32148834

RESUMO

Mango (Mangifera indica L.) is respiratory climacteric fruit that ripens and decomposes quickly following their harvest. 1-methylcyclopropene (1-MCP) is known to affect the ripening of fruit, delaying the decay of mango stored under ambient conditions. The objective of this study was to clarify the role of 1-MCP in the regulation of ethylene biosynthesis and ethylene receptor gene expression in mango. 1-MCP significantly inhibited the 1-aminocyclopropane-1-carboxylic acid (ACC) content. The activity of ACC oxidase (ACO) increased on days 6, 8, and 10 of storage, whereas delayed ACC synthase (ACS) activity increased after day 4. The two homologous ethylene receptor genes, ETR1 and ERS1 (i.e., MiETR1 and MiERS1), were obtained and deposited in GenBank® (National Center for Biotechnology Information-National Institutes of Health [NCBI-NIH]) (KY002681 and KY002682). The MiETR1 coding sequence was 2,220 bp and encoded 739 amino acids (aa). The MiERS1 coding sequence was 1,890 bp and encoded 629 aa, similar to ERS1 in other fruit. The tertiary structures of MiETR1 and MiERS1 were also predicted. MiERS1 lacks a receiver domain and shares a low homology with MiETR1 (44%). The expression of MiETR1 and MiERS1 mRNA was upregulated as the storage duration extended and reached the peak expression on day 6. Treatment with 1-MCP significantly reduced the expression of MiETR1 on days 4, 6, and 10 and inhibited the expression of MiETR1 on days 2, 4, 6, and 10. These results indicated that MiETR1 and MiERS1 had important functions in ethylene signal transduction. Treatment with 1-MCP might effectively prevent the biosynthesis of ethylene, as well as ethylene-induced ripening and senescence. This study presents an innovative method for prolonging the storage life of mango after their harvest through the regulation of MiETR1 and MiERS1 expression.

6.
Molecules ; 24(6)2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917573

RESUMO

The longan industry produces a large amount of byproducts such as pericarp and seed, resulting in environmental pollution and resource wastage. The present study was performed to systematically evaluate functional components, i.e., polyphenols (phenolics and flavonoids) and alkaloids, in longan byproducts and their bioactivities, including antioxidant activities, nitrite scavenging activities in simulated gastric fluid and anti-hyperglycemic activities in vitro. Total phenolic and total flavonoid contents in pericarp were slightly higher than those in seeds, but seeds possessed higher alkaloid content than pericarp. Four polyphenolic substances, i.e., gallic acid, ethyl gallate, corilagin and ellagic acid, were identified and quantified using high-performance liquid chromatography. Among these polyphenolic components, corilagin was the major one in both pericarp and seed. Alkaloid extract in seed showed the highest DPPH radical scavenging activity and oxygen radical absorbance capacity. Nitrite scavenging activities were improved with extract concentration and reaction time increasing. Flavonoids in seed and alkaloids in pericarp had potential to be developed as anti-hyperglycemic agents. The research result was a good reference for exploring longan byproducts into various valuable health-care products.


Assuntos
Alcaloides/análise , Polifenóis/análise , Sapindaceae/química , Alcaloides/farmacologia , Antioxidantes/análise , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Hipoglicemiantes/análise , Hipoglicemiantes/farmacologia , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA