Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
2.
Inflamm Res ; 73(6): 929-943, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642079

RESUMO

OBJECTIVES: Intimal hyperplasia is a serious clinical problem associated with the failure of therapeutic methods in multiple atherosclerosis-related coronary heart diseases, which are initiated and aggravated by the polarization of infiltrating macrophages. The present study aimed to determine the effect and underlying mechanism by which tumor necrosis factor receptor-associated factor 5 (TRAF5) regulates macrophage polarization during intimal hyperplasia. METHODS: TRAF5 expression was detected in mouse carotid arteries subjected to wire injury. Bone marrow-derived macrophages, mouse peritoneal macrophages and human myeloid leukemia mononuclear cells were also used to test the expression of TRAF5 in vitro. Bone marrow-derived macrophages upon to LPS or IL-4 stimulation were performed to examine the effect of TRAF5 on macrophage polarization. TRAF5-knockout mice were used to evaluate the effect of TRAF5 on intimal hyperplasia. RESULTS: TRAF5 expression gradually decreased during neointima formation in carotid arteries in a time-dependent manner. In addition, the results showed that TRAF5 expression was reduced in classically polarized macrophages (M1) subjected to LPS stimulation but was increased in alternatively polarized macrophages (M2) in response to IL-4 administration, and these changes were demonstrated in three different types of macrophages. An in vitro loss-of-function study with TRAF5 knockdown plasmids or TRAF5-knockout mice revealed high expression of markers associated with M1 macrophages and reduced expression of genes related to M2 macrophages. Subsequently, we incubated vascular smooth muscle cells with conditioned medium of polarized macrophages in which TRAF5 expression had been downregulated or ablated, which promoted the proliferation, migration and dedifferentiation of VSMCs. Mechanistically, TRAF5 knockdown inhibited the activation of anti-inflammatory M2 macrophages by directly inhibiting PPARγ expression. More importantly, TRAF5-deficient mice showed significantly aggressive intimal hyperplasia. CONCLUSIONS: Collectively, this evidence reveals an important role of TRAF5 in the development of intimal hyperplasia through the regulation of macrophage polarization, which provides a promising target for arterial restenosis-related disease management.


Assuntos
Hiperplasia , Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama , Fator 5 Associado a Receptor de TNF , Animais , Macrófagos/metabolismo , Fator 5 Associado a Receptor de TNF/genética , Fator 5 Associado a Receptor de TNF/metabolismo , PPAR gama/metabolismo , PPAR gama/genética , Masculino , Camundongos , Humanos , Artérias Carótidas/patologia , Neointima/patologia , Neointima/metabolismo , Interleucina-4/genética , Células Cultivadas , Túnica Íntima/patologia , Lipopolissacarídeos/farmacologia
3.
J Med Chem ; 67(4): 3144-3166, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38336655

RESUMO

Cancer immunotherapy has revolutionized clinical advances in a variety of cancers. Due to the low immunogenicity of the tumor, only a few patients can benefit from it. Specific microtubule inhibitors can effectively induce immunogenic cell death and improve immunogenicity of the tumor. A series of isoquinoline derivatives based on the natural products podophyllotoxin and diphyllin were designed and synthesized. Among them, F10 showed robust antiproliferation activity against four human cancer cell lines, and it was verified that F10 exerted antiproliferative activity by inhibiting tubulin and V-ATPase. Further studies indicated that F10 is able to induce immunogenic cell death in addition to apoptosis. Meanwhile, F10 inhibited tumor growth in an RM-1 homograft model with enhanced T lymphocyte infiltration. These results suggest that F10 may be a promising lead compound for the development of a new generation of microtubule drugs.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Tubulina (Proteína)/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Relação Estrutura-Atividade , Polimerização , Adenosina Trifosfatases/metabolismo , Morte Celular Imunogênica , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Apoptose , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Proliferação de Células , Linhagem Celular Tumoral
4.
Int J Radiat Oncol Biol Phys ; 118(3): 712-724, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778426

RESUMO

PURPOSE: Our purpose was to report the clinical and dosimetric attributes of patients with large unresectable hepatocellular carcinoma (HCC) undergoing proton or photon radiation therapy. METHODS AND MATERIALS: We retrospectively analyzed the outcomes and dosimetric indices of 159 patients with >5 cm nonmetastatic HCC who underwent definitive radiation therapy using either protons (N = 105) or photons (N = 54) between 2014 and 2018. Additional photon plans were performed in the 105 proton-treated patients using the same dose prescription criteria for intragroup dosimetric comparison. RESULTS: After a median follow-up of 47 months, patients with biologically effective dose (BED10) ≥ 75 Gy exhibited significantly better local control (LC; 2-year: 85.6% vs 20.5%; P < .001), progression-free survival (PFS; median, 7.4 vs 3.2 months; P < .001), and overall survival (OS; median, 18.1 vs 7.3 months; P < .001) compared with those with BED10 < 75 Gy. Notably, proton-treated patients had a significantly higher BED10 (96 vs 67 Gy; P < .001) and improved LC (2-year: 88.5% vs 33.8%; P < .001), PFS (median, 7.4 vs 3.3 months; P = .001), and OS (median, 18.9 vs 8.3 months; P < .001) than those undergoing photon radiation therapy. Furthermore, patients treated with protons had significantly lower V1 of the liver (P < .001), mean upper gastrointestinal tract dose (P < .001), and mean splenic dose (P < .001), with significantly decreased incidences of radiation-induced liver disease (P = .007), grade ≥3 upper gastrointestinal bleeding (P = .001), and grade ≥3 lymphopenia (P = .003). On multivariate analysis, proton radiation therapy consistently correlated with superior LC (P < .001), PFS (P < .001), and OS (P < .001). In intragroup dosimetric comparison, photon plans demonstrated significantly higher mean liver dose (P < .001) compared with actually delivered proton treatments, and 72 (69%) of them had mean liver dose exceeding 28 Gy, which necessitated target dose de-escalation. CONCLUSIONS: In the context of large HCC radiation therapy, a higher target BED10 was associated with improved outcomes. Notably, proton therapy has demonstrated the capability to deliver ablative doses while also being accompanied by fewer instances of severe toxicity.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Terapia com Prótons , Lesões por Radiação , Humanos , Carcinoma Hepatocelular/patologia , Prótons , Estudos Retrospectivos , Neoplasias Hepáticas/patologia , Lesões por Radiação/etiologia , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Dosagem Radioterapêutica
5.
Am J Hypertens ; 37(3): 230-238, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37864839

RESUMO

BACKGROUND: Increased reactive oxygen species (ROS) and oxidative stress response lead to cardiomyocyte hypertrophy and apoptosis, which play crucial roles in the pathogenesis of heart failure. The purpose of current research was to explore the role of antioxidant N-acetylcysteine (NAC) on cardiomyocyte dysfunction and the underlying molecular mechanisms. METHODS AND RESULTS: Compared with control group without NAC treatment, NAC dramatically inhibited the cell size of primary cultured neonatal rat cardiomyocytes (NRCMs) tested by immunofluorescence staining and reduced the expression of representative markers associated with hypertrophic, fibrosis and apoptosis subjected to phenylephrine administration examined by reverse transcription-polymerase chain reaction (RT-PCR) and western blot. Moreover, enhanced ROS expression was attenuated, whereas activities of makers related to oxidative stress response examined by individual assay Kits, including total antioxidation capacity (T-AOC), glutathione peroxidase (GSH-Px), and primary antioxidant enzyme Superoxide dismutase (SOD) were induced by NAC treatment in NRCMs previously treated with phenylephrine. Mechanistically, we noticed that the protein expression levels of phosphorylated phosphatidylinositol 3-kinase (PI3K) and AKT were increased by NAC stimulation. More importantly, we identified that the negative regulation of NAC in cardiomyocyte dysfunction was contributed by PI3K/AKT signaling pathway through further utilization of PI3K/AKT inhibitor (LY294002) or agonist (SC79). CONCLUSIONS: Collected, NAC could attenuate cardiomyocyte dysfunction subjected to phenylephrine, partially by regulating the ROS-induced PI3K/AKT-dependent signaling pathway.


Assuntos
Acetilcisteína , Fosfatidilinositol 3-Quinase , Ratos , Animais , Fosfatidilinositol 3-Quinase/metabolismo , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Fenilefrina/farmacologia , Transdução de Sinais , Estresse Oxidativo , Apoptose
6.
Clin Exp Gastroenterol ; 16: 225-236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090678

RESUMO

Introduction: Cholestasis is a common liver disorder that currently has limited treatment options. Gardenia Iridoid Glucosides (GIG) have been found to possess various physiological activities, such as cholagogic, hypoglycemic, antibacterial, and anti-inflammatory effects. The objective of this study was to investigate the effects of GIG on bile acid enterohepatic circulation and explore the underlying mechanism in cholestatic rats. Methods: In order to identify key pathways associated with cholestasis, we conducted Gene Ontology (GO) Enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. In vivo experiments were then performed on alpha-naphthylisothiocyanate (ANIT)-treated rats to assess the impact of GIG. We measured bile flow and various biomarkers including total bilirubin (TB), total bile acids (TBA), total cholesterol (TC), malondialdehyde (MDA), glutamic-pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), and total superoxide dismutase (T-SOD) in the serum. We also examined the expression levels of bile salt export pump (BSEP), ATP-binding cassette subfamily B member 4 (ABCB4), far-nesoid X receptor (FXR), small heterodimer partner (SHP), cholesterol 7α-hydroxylase (CYP7A1), and sodium taurocholate cotransporting polypeptide (NTCP) in liver tissue. In vitro experiments were conducted on primary hepatocytes to further investigate the mechanism of action of GIG on the expression of SHP, CYP7A1, NTCP, and FXR. Results: Our in vivo experiments demonstrated that GIG significantly increased bile flow and reduced the levels of TB, TBA, TC, MDA, GPT, and GOT, while increasing T-SOD levels in ANIT-treated rats. Addi-tionally, GIG ameliorated liver tissue damage induced by ANIT, upregulated the expression of BSEP and ABCB4, and modulated the protein expression of FXR, SHP, CYP7A1, and NTCP in model rats. In vitro experiments further revealed that GIG inhibited the expression of SHP, CYP7A1, and NTCP by suppressing the expression of FXR. Conclusion: This study provides new insights into the therapeutic potential of GIG for the treatment of cholestasis. GIG demonstrated beneficial effects on bile acid enterohepatic circulation and liver biomarkers in cholestatic rats. The modulation of FXR and its downstream targets may contribute to the mechanism of action of GIG. These findings highlight the potential of GIG as a therapeutic intervention for cholangitis.

7.
Int J Pharm X ; 6: 100218, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38033396

RESUMO

Synergistic chemotherapy and photothermal therapy (PTT) holds the promise of addressing the weakness of individualized chemotherapy and PTT. In this study, we synthesized a chemotherapeutic agent, PDA-Ce-CDs, which combines the photothermal conversion ability and the generation of hydroxyl radicals (•OH), enabling synergistic enhancement of antitumor effects. Furthermore, the localized heating effect of NIR radiation promoted the uptake of the PDA-Ce-CDs and enhances the sensitivity of intracellular reactive oxygen species (ROS). Finally, the antitumor activity of the PDA-Ce-CDs was evaluated through cell experiments and tumor-bearing mice experiments, confirming its excellent antitumor efficacy in vivo and in vitro. Our work presents a new strategy in cancer treatment by utilizing carbon dots in combination with photothermal agents for synergistic chemotherapy-photothermal therapy. This innovative approach offers a new therapeutic avenue for synergistic tumor treatment by harnessing the combined effects of photothermal therapy and chemotherapy.

8.
J Inflamm Res ; 16: 4763-4776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881652

RESUMO

Spinal Cord Injury (SCI), with its morbidity characteristics of high disability rate and high mortality rate, is a disease that is highly destructive to both the physiology and psychology of the patient, and for which there is still a lack of effective treatment. Following spinal cord injury, a cascade of secondary injury reactions known as ischemia, peripheral inflammatory cell infiltration, oxidative stress, etc. create a microenvironment that is unfavorable to neural recovery and ultimately results in apoptosis and necrosis of neurons and glial cells. Mesenchymal stem cell (MSC) transplantation has emerged as a more promising therapeutic options in recent years. MSC can promote spinal cord injury repair through a variety of mechanisms, including immunomodulation, neuroprotection, and nerve regeneration, giving patients with spinal cord injury hope. In this paper, it is discussed the neuroprotection and nerve regeneration components of MSCs' therapeutic method for treating spinal cord injuries.

9.
Biomed Pharmacother ; 168: 115632, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806094

RESUMO

Spinal Cord Injury (SCI) is a devastating neurological disorder comprising primary mechanical injury and secondary inflammatory response-mediated injury for which an effective treatment is still unavailable. It is well known that secondary inflammatory responses are a significant cause of difficulties in neurological recovery. An immune imbalance between M1/M2 macrophages at the sites of injury is involved in developing and progressing the secondary inflammatory response. Recently, Mesenchymal Stem Cells (MSCs) have shown significant therapeutic potential in tissue engineering and regenerative medicine due to their potential multidirectional differentiation and immunomodulatory properties. Accumulating evidence shows that MSCs can regulate the balance of M1/M2 macrophage polarization, suppress downstream inflammatory responses, facilitate tissue repair and regeneration, and improve the prognosis of SCI. This article briefly overviews the impact of macrophages and MSCs on SCI and repair. It discusses the mechanisms by which MSCs regulate macrophage plasticity, including paracrine action, release of exosomes and apoptotic bodies, and metabolic reprogramming. Additionally, the article summarizes the relevant signaling pathways of MSCs that regulate macrophage polarization.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Humanos , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Diferenciação Celular , Exossomos/metabolismo , Medula Espinal/metabolismo
10.
Int Rev Neurobiol ; 172: 321-331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37833017

RESUMO

Intraoperative seizure is the most prevalent and serious complication of awake craniotomy in functional areas, which may not only trigger complications of the surgical procedure or even the failure of awake craniotomy but also may result in adverse consequences to patients. The influencing factors of intraoperative seizures are unclear, and only the possible influencing factors can be acquired from the examination and summary of existing cases to offer guidance for the seizure prevention of intraoperative epilepsy.


Assuntos
Neoplasias Encefálicas , Epilepsia , Glioma , Humanos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/complicações , Vigília , Monitorização Intraoperatória/efeitos adversos , Monitorização Intraoperatória/métodos , Glioma/cirurgia , Convulsões/etiologia , Convulsões/cirurgia , Epilepsia/cirurgia , Craniotomia/efeitos adversos , Craniotomia/métodos , Mapeamento Encefálico/efeitos adversos
11.
Int J Nanomedicine ; 18: 5213-5224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37724289

RESUMO

Background: Accurate, sensitive, and rapid identification of leukemia cells in blood and bone marrow is of paramount significance for clinical diagnosis. An integrative technique combining traditional cytomorphology with immunophenotyping was proposed to improve the diagnostic efficiency in leukemia. On account of high photostability, biocompatibility, and signal-to-background ratio, upconversion nanoparticles (UCNPs) as luminescent labels have drawn substantial research scrutiny in immunolabeling. Methods: To achieve simultaneous determination, NaYF4:Yb,Er UCNPs were coupled with CD38 antibodies to construct immunofluorescence probes that were developed to bind to diffuse large B cell lymphoma (DLBCL) cells, followed by Wright's staining that has been widely used in clinical work for morphological diagnosis. Further, the experimental conditions were optimized, such as medium, slice-making method, antibody dosage, incubation time, etc. Results: The cell morphology and immunolabeling could be observed simultaneously, and its simple operation rendered it a possibility for clinical diagnosis. The developed immunolabeling assay could achieve DLBCL cell counting with high reproducibility and stability, and the detection limit was as low as 1.54 cell/slice (>3 σ/s). Moreover, the proposed method also realized real blood and bone marrow sample analysis, and the results were consistent with the clinical diagnosis. Conclusion: Overall, this strategy can be carried out after simple laboratory training and has prospective biomedical applications in leukemia classification, diagnosis validation, and differential diagnostics.


Assuntos
Leucemia , Linfoma Difuso de Grandes Células B , Nanopartículas , Humanos , Estudos Prospectivos , Reprodutibilidade dos Testes , Leucemia/diagnóstico , Coloração e Rotulagem , Anticorpos , Linfoma Difuso de Grandes Células B/diagnóstico
12.
J Ultrasound Med ; 42(11): 2661-2672, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37449666

RESUMO

OBJECTIVE: The present study assessed the diagnostic and prognostic significance of endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) for suspected intrathoracic metastasis after HNC treatment. METHODS: A retrospective analysis was conducted on 75 patients with a prior history of head and neck cancer treatment who underwent EBUS-TBNA for suspected intrathoracic metastases between March 2012 and December 2021. RESULTS: A total of 126 targeted lesions, including 107 mediastinal/hilar lymph nodes and 19 intrapulmonary/mediastinal masses, were sampled. The metastatic head and neck cancer (HNC) cases detected by EBUS-TBNA consisted of nasopharyngeal carcinoma (n = 24), oropharyngeal carcinoma (n = 3), hypopharynx carcinoma (n = 6), laryngeal carcinoma (n = 6), and oral cavity carcinoma (n = 6). Cases with negative EBUS-TBNA results consisted of tuberculosis (n = 9), sarcoidosis (n = 3), anthracosis (n = 9), and reactive lymphadenitis (n = 9). Six false-negative cases were found among the 75 patients with suspected intrathoracic metastases. The diagnostic sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of the EBUS-TBNA procedure for metastatic HNC were 88.2, 100.0, 100.0, 80, and 92.0%, respectively. The diagnosis of HNC intrathoracic metastasis by EBUS-TBNA correlated with an adverse prognosis in terms of overall survival (OS) (P = .008). The log-rank univariate analysis and Cox regression multivariate analysis results indicated that the detection of metastatic HNC through EBUS-TBNA was a significant independent prognostic factor for patients with HNC who had received prior treatment. CONCLUSIONS: Endobronchial ultrasound-guided transbronchial needle aspiration is a safe, effective, and minimally invasive procedure for assessing suspected intrathoracic metastasis in HNC patients after treatment. The intrathoracic metastasis detected by EBUS-TBNA has crucial prognostic significance in previously treated HNC patients.


Assuntos
Carcinoma , Neoplasias de Cabeça e Pescoço , Neoplasias Pulmonares , Humanos , Prognóstico , Estudos Retrospectivos , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico/métodos , Mediastino , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/patologia , Carcinoma/etiologia , Carcinoma/patologia , Neoplasias Pulmonares/patologia
13.
Immunol Lett ; 259: 1-8, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37244460

RESUMO

Recent studies have revealed that activated astrocytes (AS) are divided into two distinct types, termed A1 and A2. A2 astrocytes are neuroprotective and promote tissue repair and regeneration following spinal cord injury. Whereas, the specific mechanism for the formation of the A2 phenotype remains unclear. This study focused on the PI3K/Akt pathway and examined whether TGF-ß secreted by M2 macrophages could mediate A2 polarization by activating this pathway. In this study, we revealed that both M2 macrophages and their conditioned medium (M2-CM) could facilitate the secretion of IL-10, IL-13 and TGF-ß from AS, and this effect was significantly reversed after the administration of SB431542 (a TGF-ß receptor inhibitor) or LY294002 (a PI3K inhibitor). Moreover, immunofluorescence results demonstrated that TGF-ß secreted by M2 macrophages could facilitate the expression of A2 biomarker S100A10 in AS; combined with the results of western blot, it was found that this effect was closely related to the activation of PI3K/Akt pathway in AS. In conclusion, TGF-ß secreted by M2 macrophages may induce the conversion of AS to the A2 phenotype through the activation of the PI3K/Akt pathway.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Fator de Crescimento Transformador beta , Fator de Crescimento Transformador beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases , Astrócitos/metabolismo , Macrófagos/metabolismo
14.
Chem Eng J ; 451(Pt 2)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37033201

RESUMO

Inducing cell death while simultaneously enhancing antitumor immune responses is a promising therapeutic approach for multiple cancers. Celastrol (Cel) and 7-ethyl-10-hydroxycamptothecin (SN38) have contrasting physicochemical properties, but strong synergy in immunogenic cell death induction and anticancer activity. Herein, a hypoxia-sensitive nanosystem (CS@TAP) was designed to demonstrate effective immunotherapy for colorectal cancer by systemic delivery of an immunostimulatory chemotherapy combination. Furthermore, the combination of CS@TAP with anti-PD-L1 mAb (αPD-L1) exhibited a significant therapeutic benefit of delaying tumor growth and increased local doses of immunogenic signaling and T-cell infiltration, ultimately extending survival. We conclude that CS@TAP is an effective inducer of immunogenic cell death (ICD) in cancer immunotherapy. Therefore, this study provides an encouraging strategy to synergistically induce immunogenic cell death to enhance tumor cytotoxic T lymphocytes (CTLs) infiltration for anticancer immunotherapy.

15.
J Biol Chem ; 299(3): 103011, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36781124

RESUMO

Tau protein's reversible assembly and binding of microtubules in brain neurons are regulated by charge-neutralizing phosphorylation, while its hyperphosphorylation drives the irreversible formation of cytotoxic filaments associated with neurodegenerative diseases. However, the structural changes that facilitate these diverse functions are unclear. Here, we analyzed K18, a core peptide of tau, using newly developed spectroelectrochemical instrumentation that enables electroreduction as a surrogate for charge neutralization by phosphorylation, with simultaneous, real-time quantitative analyses of the resulting conformational transitions and assembly. We observed a tipping point between behaviors that paralleled the transition between tau's physiologically required, reversible folding and assembly and the irreversibility of assemblies. The resulting rapidly electroassembled structures represent the first fibrillar tangles of K18 that have been formed in vitro at room temperature without using heparin or other charge-complementary anionic partners. These methods make it possible to (i) trigger and analyze in real time the early stages of conformational transitions and assembly without the need for preformed seeds, heterogenous coacervation, or crowding; (ii) kinetically resolve and potentially isolate never-before-seen early intermediates in these processes; and (iii) develop assays for additional factors and mechanisms that can direct the trajectory of assembly from physiologically benign and reversible to potentially pathological and irreversible structures. We anticipate wide applicability of these methods to other amyloidogenic systems and beyond.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Doença de Alzheimer/metabolismo , Microtúbulos/metabolismo , Peptídeos/metabolismo , Fosforilação , Proteínas tau/metabolismo , Técnicas Eletroquímicas
16.
J Cancer Res Clin Oncol ; 149(7): 2805-2822, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35780396

RESUMO

BACKGROUND: N6 methyladenosine (m6A) RNA methylation regulators play a key role in the occurrence and development of many tumors. However, the function of N6 methyladenosine (m6A) RNA methylation regulators in pancreatic adenocarcinoma (PAAD) has not been fully clarified. METHODS: We used data set from GEPIA 2, UALCAN, TIMER, TISIDB, CBioPortal database to analyze the gene expression of 20 major m6A RNA methylation regulators. RESULTS: Our study revealed that the irregularity of m6A regulators were associated with poor prognosis in PAAD. Meantime, 13 m6A regulators showed high expression in PAAD samples (ALKBH5, ELAVL1, FTO, HNRNPC, IGF2BP2, METTL14, METTL16 (METT10D), RBM15, VIRMA (KIAA1429), YTHDF1, YTHDF2, YTHDF3 and ZC3H13). In these regulators, we evaluated HNRNPC and IGF2BP2 were significantly correlated with worse outcomes and ALKBH5, IGF2BP2, METTL16 (METT10D), RBM15 were significantly correlated with PAAD in advanced stage. Moreover, we showed m6A regulators is correlated with Immuno-regulators' (Immunoinhibitors, Immunostimulators and MHC molecules) expression and levels of immune infiltration in PAAD. Bioinformatics further demonstrate m6A regulators were participated in revising in RNA processing. CONCLUSIONS: Our study investigated that the m6A regulatory factors may serve as a biomarker and a potential target of immunotherapy for PAAD.


Assuntos
Adenocarcinoma , Adenosina , Neoplasias Pancreáticas , Processamento Pós-Transcricional do RNA , RNA Mensageiro , Adenosina/análogos & derivados , Adenosina/metabolismo , Neoplasias Pancreáticas/imunologia , Adenocarcinoma/imunologia , Conjuntos de Dados como Assunto , Metilação , RNA Mensageiro/metabolismo , Linfócitos/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Humanos , Linhagem Celular Tumoral
17.
Biomed Pharmacother ; 157: 114011, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36410123

RESUMO

Spinal cord injury (SCI) is a serious complication of the central nervous system (CNS) after spine injury, often resulting in severe sensory, motor, and autonomic dysfunction below the level of injury. To date, there is no effective treatment strategy for SCI. Recently, stem cell therapy has brought hope to patients with neurological diseases. Mesenchymal stem cells (MSCs) are considered to be the most promising source of cellular therapy after SCI due to their immunomodulatory, neuroprotective and angiogenic potential. Considering the limited therapeutic effect of MSCs due to the complex pathophysiological environment following SCI, this paper not only reviews the specific mechanism of MSCs to facilitate SCI repair, but also further discusses the research status of these pluripotent stem cells combined with other therapeutic approaches to promote anatomical and functional recovery post-SCI.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Traumatismos da Medula Espinal/terapia , Células-Tronco Mesenquimais/fisiologia , Recuperação de Função Fisiológica , Medula Espinal
18.
Food Sci Technol Int ; 29(8): 809-817, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35996328

RESUMO

In this study, the effect of modified atmosphere packaging with different gas mixtures on texture and muscle properties of Pacific white shrimp (Litopenaeus vannamei) during refrigerated storage was studied via texture profile, water holding capacity (WHC), protein properties (Ca2+-ATPase, TCA-soluble peptides, myofibrillar/sarcoplasmic protein content), and microbial counts. The results showed that the antibacterial effect of Modified atmosphere packaging (MAP) was correlated with the increase of CO2 with the presence of low level of O2. Though MAP without O2 had a higher whiteness value but also had higher bacterial counts and total volatile basic nitrogen (TVB-N) values compared with other MAP-groups. In general, a gas composition of 80% CO2 + 5%O2 + 15% N2 treatment had lowest microbial counts and reduced TVB-N values by 22.85% in comparison with the control on day 10. However, MAP was found to have a complicated impact on muscle protein and texture of shrimp. 60% CO2 + 5% O2 + 35% N2 and 40% CO2 + 5% O2 + 55% N2 had an advantage in maintaining springiness and the content of myofibrillar/sarcoplasmic proteins. The correlation analysis showed that WHC had stronger relationship with springiness, resilience, myofibrillar protein content. Therefore, regarding the texture and protein properties, the concentration of CO2 in MAP for Pacific white shrimp should not be higher than 60%.


Assuntos
Embalagem de Alimentos , Penaeidae , Animais , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Dióxido de Carbono , Proteínas Musculares , Nitrogênio/análise , Penaeidae/química , Penaeidae/microbiologia , Atmosfera/análise
19.
Front Immunol ; 13: 1014013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532022

RESUMO

It is often difficult to regain neurological function following spinal cord injury (SCI). Neuroinflammation is thought to be responsible for this failure. Regulating the inflammatory response post-SCI may contribute to the recovery of neurological function. Over the past few decades, studies have found that macrophages/microglia are one of the primary effector cells in the inflammatory response following SCI. Growing evidence has documented that macrophages/microglia are plastic cells that can polarize in response to microenvironmental signals into M1 and M2 macrophages/microglia. M1 produces pro-inflammatory cytokines to induce inflammation and worsen tissue damage, while M2 has anti-inflammatory activities in wound healing and tissue regeneration. Recent studies have indicated that the transition from the M1 to the M2 phenotype of macrophage/microglia supports the regression of inflammation and tissue repair. Here, we will review the role of the inflammatory response and macrophages/microglia in SCI and repair. In addition, we will discuss potential molecular mechanisms that induce macrophage/microglia polarization, with emphasis on neuroprotective therapies that modulate macrophage/microglia polarization, which will provide new insights into therapeutic strategies for SCI.


Assuntos
Microglia , Traumatismos da Medula Espinal , Humanos , Ativação de Macrófagos , Traumatismos da Medula Espinal/tratamento farmacológico , Macrófagos , Inflamação
20.
J Med Chem ; 65(24): 16774-16800, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36471625

RESUMO

Natural products are a major source of anticancer agents and play critical roles in anticancer drug development. Inspired by the complexity-to-diversity strategy, novel deoxypodophyllotoxin (DPT) analogues were designed and synthesized. Among them, compound C3 exhibited the potent antiproliferative activity against four human cancer cell lines with IC50 values in the low nanomolar range. Additionally, it showed marked activity against paclitaxel-resistant MCF-7 cells and A549 cells. Moreover, compound C3 can inhibit tubulin polymerization by targeting the colchicine-binding site of tubulin. Further study revealed that compound C3 could arrest cancer cells in the G2/M phase and disrupt the angiogenesis in human umbilical vein endothelial cells. Meanwhile, C3 remarkably inhibited cancer cell motility and migration, as well as considerably inhibited tumor growth in MCF-7 and MCF-7/TxR xenograft model without obvious toxicity. Collectively, these results indicated that compound C3 may be a promising tubulin polymerization inhibitor development for cancer treatment.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Moduladores de Tubulina/química , Colchicina/metabolismo , Tubulina (Proteína)/metabolismo , Células Endoteliais/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Sítios de Ligação , Células MCF-7 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Polimerização , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA