RESUMO
Insulin receptor substrate-2 (IRS-2), a substrate of the insulin-like growth factor (IGF)-I receptor, is highly expressed in the prostate cancer cell line, PC3. We recently demonstrated that extracellular signal-regulated kinase (Erk1/2), a kinase downstream of IGF signaling, is activated in PC3 cells under serum starvation, and this activation can be inhibited by IRS-2 knockdown. Here, we observed that adding an IGF-I-neutralizing antibody to the culture medium inhibited the activation of Erk1/2. Suppression of Erk1/2 in IRS-2 knockdown cells was restored by the addition of a PC3 serum-free conditioned medium. In contrast, the IRS-2-silenced PC3 conditioned medium could not restore Erk1/2 activation, suggesting that IRS-2 promotes the secretion of proteins that activate the IGF signaling pathway. Furthermore, gelatin zymography analysis of the conditioned medium showed that matrix metalloproteinase-9 (MMP-9) was secreted extracellularly in an IRS-2 dependent manner when PC3 was cultured under serum starvation conditions. Moreover, MMP-9 knockdown suppressed Erk1/2 activation, DNA synthesis, and migratory activity. The IRS-2 levels were positively correlated with Gleason grade in human prostate cancer tissues. These data suggest that highly expressed IRS-2 activates IGF signaling by enabling the secretion of MMP-9, which is associated with hyperproliferation and malignancy of prostate cancer cell line, PC3.
Assuntos
Carcinoma , Neoplasias da Próstata , Humanos , Masculino , Carcinoma/metabolismo , Linhagem Celular , Meios de Cultivo Condicionados/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Células PC-3 , Fosfoproteínas/metabolismo , Fosforilação , Próstata/patologia , Neoplasias da Próstata/metabolismoRESUMO
Membrane lytic peptides (MLP) are widely explored as cellular delivery vehicles or antitumor/antibacterial agents. However, the poor selectivity between cancer and normal cells slims their prospects as potential anti-tumor drugs. Herein, we have developed a rationally designed self-assembly strategy to enhance tumor selectivity of MLP-based conjugates, incorporating a hydrophobic triphenylphosphonium (TPP) group for mitochondria targeting, and a hydrophilic arginine-glycine-aspartic acid (RGD) sequence targeting integrins. The self-assembly nanoparticles can enhance the stability of the peptides inâ vitro plasma and be endocytosed selectively into the cancer cells. The histidine-rich lytic peptide component assists the disruption of endosomal/lysosomal membranes and subsequent the mitochondria membrane, which leads to apoptosis. This rational design of MLP-based conjugates provides a practical strategy to increase the application prospects of lytic peptides in cancer treatment.