Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746096

RESUMO

Cells regulate their shape and metabolic activity in response to the mechano-chemical properties of their microenvironment. To elucidate the impact of matrix stiffness and ligand density on a cell's bioenergetics, we developed a non-equilibrium, active chemo-mechanical model that accounts for mechanical energy of the cell and matrix, chemical energy from ATP hydrolysis, interfacial energy, and mechano-sensitive regulation of stress fiber assembly through signaling. By integrating the kinetics and energetics of these processes we introduce the concept of the metabolic potential of the cell that, when minimized, gives experimentally testable predictions of the cell contractility, shape, and the ATP consumption. Specifically, we show that MDA-MB-231 breast cancer cells in 3D collagen gels follow a spherical to spindle to spherical change in morphology with increasing matrix stiffness consistent with experimental observations. This biphasic transition in cell shape emerges from a competition between increased contractility accompanied by ATP hydrolysis enabled by mechano-sensitive signaling, which lowers the volumetric contribution to the metabolic potential of elongated cells and the interfacial energy which is lower for spherical shapes. On 2D hydrogels, our model predicts a hemispherical to spindle to disc shape transition with increasing gel stiffness. In both cases, we show that increasing matrix stiffness monotonically increases the cell's contractility as well as ATP consumption. Our model also predicts how the increased energy demand in stiffer microenvironments is met by AMPK activation, which is confirmed through experimental measurement of activated AMPK levels as a function of matrix stiffness carried out here in both 2D and 3D micro-environments. Further, model predictions of increased AMPK activation on stiffer micro-environments are found to correlate strongly with experimentally measured upregulation of mitochondrial potential, glucose uptake and ATP levels. The insights from our model can be used to understand mechanosensitive regulation of metabolism in physiological events such as metastasis and tumor progression during which cells experience dynamic changes in their microenvironment and metabolic state.

3.
Nat Mater ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957268

RESUMO

Breast cancer becomes invasive when carcinoma cells invade through the basement membrane (BM)-a nanoporous layer of matrix that physically separates the primary tumour from the stroma. Single cells can invade through nanoporous three-dimensional matrices due to protease-mediated degradation or force-mediated widening of pores via invadopodial protrusions. However, how multiple cells collectively invade through the physiological BM, as they do during breast cancer progression, remains unclear. Here we developed a three-dimensional in vitro model of collective invasion of the BM during breast cancer. We show that cells utilize both proteases and forces-but not invadopodia-to breach the BM. Forces are generated from a combination of global cell volume expansion, which stretches the BM, and local contractile forces that act in the plane of the BM to breach it, allowing invasion. These results uncover a mechanism by which cells collectively interact to overcome a critical barrier to metastasis.

4.
bioRxiv ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961689

RESUMO

Mechanical properties of the extracellular matrices (ECMs) critically regulate a number of important cell function including growth, differentiation and migration. Type I collagen and glycosaminoglycans (GAGs) are two primary components of ECMs that contribute to tissue mechanics with the collagen fiber network sustaining tension and GAGs withstanding compression. Collagen stiffness as well as its architecture are known to be important role players in cell-ECM mechanical interactions, however, much less is known about how GAGs within ECMs regulate cell force generation and invasion. Inspired by a recent theoretical work from the Shenoy lab that GAGs play important roles in cell - ECM interactions, we hereby present experimental studies on the role of hyaluronic acid (HA, an unsulfated GAG) in single tumor cell traction force generation within HA collagen cogels using a recently developed 3D cell traction force microscopy. Our work revealed that CD44, a cell surface adhesion receptor to HA, was engaged in cell traction force generation in conjunction with ß1-integrin. Furthermore, we found that HA significantly modified the architecture and mechanics of the collagen fiber network, decreased tumor cells' propensity to remodel the collagen network, decreased traction force generation and transmission distance, and attenuated tumor invasion in agreement with theoretical predictions. Our findings highlighted the significance of CD44 and HA engagement in cell-ECM mechanical interactions, providing new insights on the mechanical model of cellular force transmission.

5.
J Cyst Fibros ; 22(6): 996-1001, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37758535

RESUMO

BACKGROUND: Improvement in exocrine pancreatic function in persons with CF (pwCF) on cystic fibrosis transmembrane conductance regulator (CFTR) modulators has been documented in clinical trials using fecal pancreatic elastase-1 (FE-1). Our group endeavored to evaluate real-world data on FE-1 in children on CFTR modulator therapy at three pediatric cystic fibrosis (CF) centers. METHODS: Pediatric pwCF were offered FE-1 testing if they were on pancreatic enzyme replacement therapy (PERT) and on CFTR modulator therapy according to their center's guideline. FE-1 data were collected retrospectively. The primary outcome was absolute change in FE-1. RESULTS: 70 pwCF were included for analysis. 53 had baseline and post-modulator FE-1 values. There was a significant increase in FE-1 from median 25 mcg/g (IQR 25-60) at baseline to 57 mcg/g (IQR 20-228) post-modulator (p<0.001 by Wilcoxon matched pairs), with an absolute change in FE-1 of median 28 mcg/g (IQR -5-161) and mean 93.5 ± 146.8 mcg/g. Age was negatively correlated with change in FE-1 (Spearman r=-0.48, p<0.001). 15 pwCF (21%) had post-modulator FE-1 values ≥200 mcg/g, consistent with pancreatic sufficiency (PS). The PS group was significant for younger age at initiation of first CFTR modulator and a higher baseline FE-1. CONCLUSIONS: Most pwCF experienced an increase in FE-1 while receiving CFTR modulator treatment and a small percentage demonstrated values reflective of PS. These data suggest that PS may be attained in those that initiated modulator therapy at a younger age or had a higher baseline FE-1. FE-1 testing is suggested for children on any CFTR modulator therapy.


Assuntos
Fibrose Cística , Criança , Humanos , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mutação , Pâncreas , Elastase Pancreática/metabolismo , Estudos Retrospectivos
6.
Nat Commun ; 14(1): 2902, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217555

RESUMO

Immune cells, such as macrophages and dendritic cells, can utilize podosomes, mechanosensitive actin-rich protrusions, to generate forces, migrate, and patrol for foreign antigens. Individual podosomes probe their microenvironment through periodic protrusion and retraction cycles (height oscillations), while oscillations of multiple podosomes in a cluster are coordinated in a wave-like fashion. However, the mechanisms governing both the individual oscillations and the collective wave-like dynamics remain unclear. Here, by integrating actin polymerization, myosin contractility, actin diffusion, and mechanosensitive signaling, we develop a chemo-mechanical model for podosome dynamics in clusters. Our model reveals that podosomes show oscillatory growth when actin polymerization-driven protrusion and signaling-associated myosin contraction occur at similar rates, while the diffusion of actin monomers drives wave-like coordination of podosome oscillations. Our theoretical predictions are validated by different pharmacological treatments and the impact of microenvironment stiffness on chemo-mechanical waves. Our proposed framework can shed light on the role of podosomes in immune cell mechanosensing within the context of wound healing and cancer immunotherapy.


Assuntos
Podossomos , Podossomos/metabolismo , Actinas/metabolismo , Macrófagos/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(16): e2216811120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036981

RESUMO

Matrix stiffening and external mechanical stress have been linked to disease and cancer development in multiple tissues, including the liver, where cirrhosis (which increases stiffness markedly) is the major risk factor for hepatocellular carcinoma. Patients with nonalcoholic fatty liver disease and lipid droplet-filled hepatocytes, however, can develop cancer in noncirrhotic, relatively soft tissue. Here, by treating primary human hepatocytes with the monounsaturated fatty acid oleate, we show that lipid droplets are intracellular mechanical stressors with similar effects to tissue stiffening, including nuclear deformation, chromatin condensation, and impaired hepatocyte function. Mathematical modeling of lipid droplets as inclusions that have only mechanical interactions with other cellular components generated results consistent with our experiments. These data show that lipid droplets are intracellular sources of mechanical stress and suggest that nuclear membrane tension integrates cell responses to combined internal and external stresses.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Gotículas Lipídicas/metabolismo , Hepatócitos/patologia , Carcinoma Hepatocelular/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Neoplasias Hepáticas/patologia , Metabolismo dos Lipídeos/fisiologia
8.
Adv Sci (Weinh) ; 10(16): e2206554, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37051804

RESUMO

Cancer cell extravasation, a key step in the metastatic cascade, involves cancer cell arrest on the endothelium, transendothelial migration (TEM), followed by the invasion into the subendothelial extracellular matrix (ECM) of distant tissues. While cancer research has mostly focused on the biomechanical interactions between tumor cells (TCs) and ECM, particularly at the primary tumor site, very little is known about the mechanical properties of endothelial cells and the subendothelial ECM and how they contribute to the extravasation process. Here, an integrated experimental and theoretical framework is developed to investigate the mechanical crosstalk between TCs, endothelium and subendothelial ECM during in vitro cancer cell extravasation. It is found that cancer cell actin-rich protrusions generate complex push-pull forces to initiate and drive TEM, while transmigration success also relies on the forces generated by the endothelium. Consequently, mechanical properties of the subendothelial ECM and endothelial actomyosin contractility that mediate the endothelial forces also impact the endothelium's resistance to cancer cell transmigration. These results indicate that mechanical features of distant tissues, including force interactions between the endothelium and the subendothelial ECM, are key determinants of metastatic organotropism.


Assuntos
Neoplasias , Migração Transendotelial e Transepitelial , Células Endoteliais , Endotélio , Actinas , Fenômenos Mecânicos
9.
Nat Commun ; 13(1): 7089, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402771

RESUMO

The formation and recovery of gaps in the vascular endothelium governs a wide range of physiological and pathological phenomena, from angiogenesis to tumor cell extravasation. However, the interplay between the mechanical and signaling processes that drive dynamic behavior in vascular endothelial cells is not well understood. In this study, we propose a chemo-mechanical model to investigate the regulation of endothelial junctions as dependent on the feedback between actomyosin contractility, VE-cadherin bond turnover, and actin polymerization, which mediate the forces exerted on the cell-cell interface. Simulations reveal that active cell tension can stabilize cadherin bonds, but excessive RhoA signaling can drive bond dissociation and junction failure. While actin polymerization aids gap closure, high levels of Rac1 can induce junction weakening. Combining the modeling framework with experiments, our model predicts the influence of pharmacological treatments on the junction state and identifies that a critical balance between RhoA and Rac1 expression is required to maintain junction stability. Our proposed framework can help guide the development of therapeutics that target the Rho family of GTPases and downstream active mechanical processes.


Assuntos
Actinas , Células Endoteliais , Células Endoteliais/metabolismo , Actinas/metabolismo , Retroalimentação , Transdução de Sinais , Citoesqueleto de Actina/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(15): e2116718119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394874

RESUMO

Cells can sense and respond to mechanical forces in fibrous extracellular matrices (ECMs) over distances much greater than their size. This phenomenon, termed long-range force transmission, is enabled by the realignment (buckling) of collagen fibers along directions where the forces are tensile (compressive). However, whether other key structural components of the ECM, in particular glycosaminoglycans (GAGs), can affect the efficiency of cellular force transmission remains unclear. Here we developed a theoretical model of force transmission in collagen networks with interpenetrating GAGs, capturing the competition between tension-driven collagen fiber alignment and the swelling pressure induced by GAGs. Using this model, we show that the swelling pressure provided by GAGs increases the stiffness of the collagen network by stretching the fibers in an isotropic manner. We found that the GAG-induced swelling pressure can help collagen fibers resist buckling as the cells exert contractile forces. This mechanism impedes the alignment of collagen fibers and decreases long-range cellular mechanical communication. We experimentally validated the theoretical predictions by comparing the intensity of collagen fiber alignment between cellular spheroids cultured on collagen gels versus collagen­GAG cogels. We found significantly lower intensities of aligned collagen in collagen­GAG cogels, consistent with the prediction that GAGs can prevent collagen fiber alignment. The role of GAGs in modulating force transmission uncovered in this work can be extended to understand pathological processes such as the formation of fibrotic scars and cancer metastasis, where cells communicate in the presence of abnormally high concentrations of GAGs.


Assuntos
Comunicação Celular , Matriz Extracelular , Glicosaminoglicanos , Fenômenos Biomecânicos , Fenômenos Fisiológicos Celulares , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibrose , Glicosaminoglicanos/metabolismo , Humanos , Neoplasias
11.
Sci Rep ; 11(1): 16478, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389738

RESUMO

Here we present a microengineered soft-robotic in vitro platform developed by integrating a pneumatically regulated novel elastomeric actuator with primary culture of human cells. This system is capable of generating dynamic bending motion akin to the constriction of tubular organs that can exert controlled compressive forces on cultured living cells. Using this platform, we demonstrate cyclic compression of primary human endothelial cells, fibroblasts, and smooth muscle cells to show physiological changes in their morphology due to applied forces. Moreover, we present mechanically actuatable organotypic models to examine the effects of compressive forces on three-dimensional multicellular constructs designed to emulate complex tissues such as solid tumors and vascular networks. Our work provides a preliminary demonstration of how soft-robotics technology can be leveraged for in vitro modeling of complex physiological tissue microenvironment, and may enable the development of new research tools for mechanobiology and related areas.


Assuntos
Robótica , Engenharia Tecidual , Força Compressiva , Células Endoteliais/fisiologia , Fibroblastos/fisiologia , Humanos , Técnicas In Vitro , Miócitos de Músculo Liso/fisiologia , Invasividade Neoplásica , Robótica/instrumentação , Robótica/métodos
12.
Nat Mater ; 20(9): 1290-1299, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33875851

RESUMO

Cell migration on two-dimensional substrates is typically characterized by lamellipodia at the leading edge, mature focal adhesions and spread morphologies. These observations result from adherent cell migration studies on stiff, elastic substrates, because most cells do not migrate on soft, elastic substrates. However, many biological tissues are soft and viscoelastic, exhibiting stress relaxation over time in response to a deformation. Here, we have systematically investigated the impact of substrate stress relaxation on cell migration on soft substrates. We observed that cells migrate minimally on substrates with an elastic modulus of 2 kPa that are elastic or exhibit slow stress relaxation, but migrate robustly on 2-kPa substrates that exhibit fast stress relaxation. Strikingly, migrating cells were not spread out and did not extend lamellipodial protrusions, but were instead rounded, with filopodia protrusions extending at the leading edge, and exhibited small nascent adhesions. Computational models of cell migration based on a motor-clutch framework predict the observed impact of substrate stress relaxation on cell migration and filopodia dynamics. Our findings establish substrate stress relaxation as a key requirement for robust cell migration on soft substrates and uncover a mode of two-dimensional cell migration marked by round morphologies, filopodia protrusions and weak adhesions.


Assuntos
Movimento Celular , Pseudópodes/metabolismo , Membrana Basal/metabolismo , Fenômenos Biomecânicos , Adesão Celular , Linhagem Celular , Linhagem Celular Tumoral , Elasticidade , Humanos
13.
Cell Rep ; 35(4): 109047, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33909999

RESUMO

Most extracellular matrices (ECMs) are known to be dissipative, exhibiting viscoelastic and often plastic behaviors. However, the influence of dissipation, in particular mechanical plasticity in 3D confining microenvironments, on cell motility is not clear. In this study, we develop a chemo-mechanical model for dynamics of invadopodia, the protrusive structures that cancer cells use to facilitate invasion, by considering myosin recruitment, actin polymerization, matrix deformation, and mechano-sensitive signaling pathways. We demonstrate that matrix dissipation facilitates invadopodia growth by softening ECMs over repeated cycles, during which plastic deformation accumulates via cyclic ratcheting. Our model reveals that distinct protrusion patterns, oscillatory or monotonic, emerge from the interplay of timescales for polymerization-associated extension and myosin recruitment dynamics. Our model predicts the changes in invadopodia dynamics upon inhibition of myosin, adhesions, and the Rho-Rho-associated kinase (ROCK) pathway. Altogether, our work highlights the role of matrix plasticity in invadopodia dynamics and can help design dissipative biomaterials to modulate cancer cell motility.


Assuntos
Matriz Extracelular/metabolismo , Podossomos/metabolismo , Movimento Celular , Retroalimentação , Humanos , Transdução de Sinais
14.
Sci Adv ; 7(11)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33712463

RESUMO

Here, we present an approach to model and adapt the mechanical regulation of morphogenesis that uses contractile cells as sculptors of engineered tissue anisotropy in vitro. Our method uses heterobifunctional cross-linkers to create mechanical boundary constraints that guide surface-directed sculpting of cell-laden extracellular matrix hydrogel constructs. Using this approach, we engineered linearly aligned tissues with structural and mechanical anisotropy. A multiscale in silico model of the sculpting process was developed to reveal that cell contractility increases as a function of principal stress polarization in anisotropic tissues. We also show that the anisotropic biophysical microenvironment of linearly aligned tissues potentiates soluble factor-mediated tenogenic and myogenic differentiation of mesenchymal stem cells. The application of our method is demonstrated by (i) skeletal muscle arrays to screen therapeutic modulators of acute oxidative injury and (ii) a 3D microphysiological model of lung cancer cachexia to study inflammatory and oxidative muscle injury induced by tumor-derived signals.


Assuntos
Células-Tronco Mesenquimais , Engenharia Tecidual , Anisotropia , Diferenciação Celular , Matriz Extracelular/química , Hidrogéis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
15.
Nat Commun ; 11(1): 6148, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262337

RESUMO

Sustained proliferation is a significant driver of cancer progression. Cell-cycle advancement is coupled with cell size, but it remains unclear how multiple cells interact to control their volume in 3D clusters. In this study, we propose a mechano-osmotic model to investigate the evolution of volume dynamics within multicellular systems. Volume control depends on an interplay between multiple cellular constituents, including gap junctions, mechanosensitive ion channels, energy-consuming ion pumps, and the actomyosin cortex, that coordinate to manipulate cellular osmolarity. In connected cells, we show that mechanical loading leads to the emergence of osmotic pressure gradients between cells with consequent increases in cellular ion concentrations driving swelling. We identify how gap junctions can amplify spatial variations in cell volume within multicellular spheroids and, further, describe how the process depends on proliferation-induced solid stress. Our model may provide new insight into the role of gap junctions in breast cancer progression.


Assuntos
Neoplasias da Mama/fisiopatologia , Proliferação de Células , Junções Comunicantes/química , Esferoides Celulares/citologia , Neoplasias da Mama/química , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Tamanho Celular , Progressão da Doença , Feminino , Humanos , Pressão Osmótica , Esferoides Celulares/química
16.
Nature ; 584(7822): 535-546, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32848221

RESUMO

Substantial research over the past two decades has established that extracellular matrix (ECM) elasticity, or stiffness, affects fundamental cellular processes, including spreading, growth, proliferation, migration, differentiation and organoid formation. Linearly elastic polyacrylamide hydrogels and polydimethylsiloxane (PDMS) elastomers coated with ECM proteins are widely used to assess the role of stiffness, and results from such experiments are often assumed to reproduce the effect of the mechanical environment experienced by cells in vivo. However, tissues and ECMs are not linearly elastic materials-they exhibit far more complex mechanical behaviours, including viscoelasticity (a time-dependent response to loading or deformation), as well as mechanical plasticity and nonlinear elasticity. Here we review the complex mechanical behaviours of tissues and ECMs, discuss the effect of ECM viscoelasticity on cells, and describe the potential use of viscoelastic biomaterials in regenerative medicine. Recent work has revealed that matrix viscoelasticity regulates these same fundamental cell processes, and can promote behaviours that are not observed with elastic hydrogels in both two- and three-dimensional culture microenvironments. These findings have provided insights into cell-matrix interactions and how these interactions differentially modulate mechano-sensitive molecular pathways in cells. Moreover, these results suggest design guidelines for the next generation of biomaterials, with the goal of matching tissue and ECM mechanics for in vitro tissue models and applications in regenerative medicine.


Assuntos
Elasticidade , Matriz Extracelular/metabolismo , Substâncias Viscoelásticas , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Técnicas de Cultura de Células , Forma Celular , Matriz Extracelular/química , Humanos , Mecanotransdução Celular , Células-Tronco Mesenquimais/citologia , Modelos Biológicos , Medicina Regenerativa
17.
Proc Natl Acad Sci U S A ; 117(21): 11387-11398, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32385149

RESUMO

Altered microarchitecture of collagen type I is a hallmark of wound healing and cancer that is commonly attributed to myofibroblasts. However, it remains unknown which effect collagen microarchitecture has on myofibroblast differentiation. Here, we combined experimental and computational approaches to investigate the hypothesis that the microarchitecture of fibrillar collagen networks mechanically regulates myofibroblast differentiation of adipose stromal cells (ASCs) independent of bulk stiffness. Collagen gels with controlled fiber thickness and pore size were microfabricated by adjusting the gelation temperature while keeping their concentration constant. Rheological characterization and simulation data indicated that networks with thicker fibers and larger pores exhibited increased strain-stiffening relative to networks with thinner fibers and smaller pores. Accordingly, ASCs cultured in scaffolds with thicker fibers were more contractile, expressed myofibroblast markers, and deposited more extended fibronectin fibers. Consistent with elevated myofibroblast differentiation, ASCs in scaffolds with thicker fibers exhibited a more proangiogenic phenotype that promoted endothelial sprouting in a contractility-dependent manner. Our findings suggest that changes of collagen microarchitecture regulate myofibroblast differentiation and fibrosis independent of collagen quantity and bulk stiffness by locally modulating cellular mechanosignaling. These findings have implications for regenerative medicine and anticancer treatments.


Assuntos
Colágeno/ultraestrutura , Miofibroblastos/citologia , Células Estromais/citologia , Tecido Adiposo/citologia , Fenômenos Biomecânicos , Diferenciação Celular , Células Cultivadas , Colágeno/metabolismo , Matriz Extracelular/ultraestrutura , Fibronectinas/metabolismo , Humanos , Mecanotransdução Celular , Miofibroblastos/metabolismo , Miofibroblastos/ultraestrutura , Células Estromais/metabolismo , Células Estromais/ultraestrutura
18.
Biomater Sci ; 8(7): 2040, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32154809

RESUMO

Correction for 'Opposite responses of normal hepatocytes and hepatocellular carcinoma cells to substrate viscoelasticity' by Kalpana Mandal et al., Biomater. Sci., 2020, 8, 1316-1328.

19.
Biomater Sci ; 8(5): 1316-1328, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-31903466

RESUMO

The cellular microenvironment plays a critical role in cell differentiation, proliferation, migration, and homeostasis. Recent studies have shown the importance of substrate viscosity in determining cellular function. Here, we study the mechanoresponse of normal hepatocytes and hepatocellular carcinoma cells (HCC) to elastic and viscoelastic substrates using the Huh7 cell line derived from a human liver tumor and primary human hepatocytes (PHH). Unlike PHH and fibroblasts, which respond to viscoelastic substrates by reducing spreading area and actin bundle assembly compared to purely elastic substrates of the same stiffness, Huh7 cells spread faster on viscoelastic substrates than on purely elastic substrates. The steady state spreading areas of Huh7 cells are larger on viscoelastic substrates, whereas the opposite effect occurs with PHH cells. The viscoelasticity of the microenvironment also promotes motility and multiple long protrusions in Huh7 cells. Pharmacologic disruption of the actin assembly makes cells unable to spread on either elastic or viscoelastic substrates. In contrast, upon vimentin perturbation, cells still spread to a limited degree on elastic substrates but are unable to spread on viscoelastic substrates. The time evolution of cell traction force shows that the peak occurs at an earlier time point on viscoelastic substrates compared to elastic substrates. However, the total force generation at steady state is the same on both substrates after 4 hours. Our data suggest that stress relaxation time scales of the viscoelastic substrate regulate cell dynamics and traction force generation, indicating different binding-unbinding rates of the proteins that form cell attachment sites in HCC cells and normal hepatocytes. These results suggest that liver cancer cells may have different characteristic lifetimes of binding to the substrate in comparision to normal cells, which might cause differences in cell spreading and motility within the diseased tissue.


Assuntos
Carcinoma Hepatocelular/patologia , Elasticidade , Hepatócitos/citologia , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral , Vimentina/metabolismo , Viscosidade
20.
Adv Mater ; 32(8): e1905719, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31851400

RESUMO

The extracellular matrix (ECM) has force-responsive (i.e., mechanochemical) properties that enable adaptation to mechanical loading through changes in fibrous network structure and interfiber bonding. Imparting such properties into synthetic fibrous materials will allow reinforcement under mechanical load, the potential for material self-adhesion, and the general mimicking of ECM. Multifiber hydrogel networks are developed through the electrospinning of multiple fibrous hydrogel populations, where fibers contain complementary chemical moieties (e.g., aldehyde and hydrazide groups) that form covalent bonds within minutes when brought into contact under mechanical load. These fiber interactions lead to microscale anisotropy, as well as increased material stiffness and plastic deformation. Macroscale structures (e.g., tubes and layered scaffolds) are fabricated from these materials through interfiber bonding and adhesion when placed into contact while maintaining a microscale fibrous architecture. The design principles for engineering plasticity described can be applied to numerous material systems to introduce unique properties, from textiles to biomedical applications.


Assuntos
Adesivos/química , Hidrogéis/química , Módulo de Elasticidade , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Ácido Hialurônico/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Oligopeptídeos/química , Oligopeptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA