Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 83(1): 286-91, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25368111

RESUMO

Hemolytic-uremic syndrome (HUS), caused by Shiga toxin (Stx)-producing Escherichia coli (STEC), remains untreatable. Production of human monoclonal antibodies against Stx, which are highly effective in preventing Stx sequelae in animal models, is languishing due to cost and logistics. We reported previously that the production and evaluation of a camelid heavy-chain-only VH domain (VHH)-based neutralizing agent (VNA) targeting Stx1 and Stx2 (VNA-Stx) protected mice from Stx1 and Stx2 intoxication. Here we report that a single intramuscular (i.m.) injection of a nonreplicating adenovirus (Ad) vector carrying a secretory transgene of VNA-Stx (Ad/VNA-Stx) protected mice challenged with Stx2 and protected gnotobiotic piglets infected with STEC from fatal systemic intoxication. One i.m. dose of Ad/VNA-Stx prevented fatal central nervous system (CNS) symptoms in 9 of 10 animals when it was given to piglets 24 h after bacterial challenge and in 5 of 9 animals when it was given 48 h after bacterial challenge, just prior to the onset of CNS symptoms. All 6 placebo animals died or were euthanized with severe CNS symptoms. Ad/VNA-Stx treatment had no impact on diarrhea. In conclusion, Ad/VNA-Stx treatment is effective in protecting piglets from fatal Stx2-mediated CNS complications following STEC challenge. With a low production cost and further development, this could presumably be an effective treatment for patients with HUS and/or individuals at high risk of developing HUS due to exposure to STEC.


Assuntos
Adenovírus Humanos/genética , Anticorpos Neutralizantes/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli O157/imunologia , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Toxina Shiga I/antagonistas & inibidores , Toxina Shiga II/antagonistas & inibidores , Animais , Anticorpos Neutralizantes/genética , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/genética , Feminino , Vetores Genéticos , Síndrome Hemolítico-Urêmica/imunologia , Síndrome Hemolítico-Urêmica/microbiologia , Injeções Intramusculares , Camundongos , Toxina Shiga I/imunologia , Toxina Shiga II/imunologia , Análise de Sobrevida , Suínos , Fatores de Tempo
2.
BMC Immunol ; 11: 16, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20334660

RESUMO

BACKGROUND: Shiga toxin 2 (Stx2), one of two Stx liberated by Stx-producing Escherichia coli, is composed of an A subunit monomer and a B subunit pentamer, and is directly linked with hemolytic uremic syndrome in children. The pentameric B subunit binds to its cell surface receptor Gb3 for toxin internalization, and the A subunit follows intracellular retrograde transport to the cytosol where its RNA N-glycosidase activity (RNA-NGA) shuts down the protein synthesis, and leads to cell death. The present study investigated the ability of 19 Stx2 A subunit-specific human monoclonal antibodies (HuMAbs) to neutralize the RNA-NGA, and the association this neutralizing activity with protection of HeLa cells and mice against Stx2-induced death. RESULTS: The HuMAbs that were stronger inhibitors of RNA-NGA were also better at neutralizing Stx2 mediated HeLa cell death, and those that were weaker inhibitors of RNA-NGA activity were also weaker in protecting HeLa cells. These results suggest that the ability of an A subunit-specific antibody to block the RNA-NGA of the toxin is directly related to its ability to neutralize Stx2-mediated HeLa cell death. However, with the exception of the best RNA-NGA blocking antibodies 5C12 and 2F10, the efficacies of antibody neutralization of RNA-NGA of Stx2 did not correlate with their in vivo protective efficacies. The HuMAb 6C3, which neutralized RNA N-glycosidase activity of Stx2 less effectively than the HuMAbs 6D8 and 6B7, protected 100% of the mice against Stx2 challenge at 50 microg/mouse dose. In contrast, the HuMAbs 6D8 and 6B7, which neutralized RNA N-glycosidase activity of Stx2 more effectively than 6C3, protected 20% and 0% mice at that dose, respectively. CONCLUSIONS: The neutralization efficiency of the RNA-NGA of Stx2 by A subunit-specific antibodies correlate strongly with their abilities to protect HeLa cells against Stx2-mediated toxicity but only the strongest RNA-NGA-neutralizing antibodies correlate very well with both protecting HeLa cells and mice against Stx2 challenge.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Proteínas Inativadoras de Ribossomos/antagonistas & inibidores , Toxina Shiga II/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Western Blotting , Células HeLa , Humanos , Camundongos
3.
Mol Biochem Parasitol ; 168(1): 95-101, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19631240

RESUMO

The genus Cryptosporidium includes several species of intestinal protozoan parasites which multiply in intestinal epithelial cells. The impact of this infection on the transcriptome of cultured host cells was investigated using DNA microarray hybridizations. The expression of 14 genes found to be consistently up- or down-regulated in infected cell monolayers was validated with RT PCR. Using immunofluorescence we examined the expression of Protease Activated Receptor-2, which is encoded by one of the up-regulated genes. In infected cells this receptor localized to the host cell membrane which covers the intracellular trophozoites and meronts. This observation indicates that the composition of the host cell membrane is affected by the developing trophozoite, a phenomenon which has not been described previously.


Assuntos
Membrana Celular/química , Cryptosporidium parvum/fisiologia , Células Epiteliais/parasitologia , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita , Receptor PAR-2/análise , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Microscopia de Fluorescência , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA