RESUMO
Surface plasmon resonance (SPR) is a widely used method to study ligand-protein interactions. The throughput and sensitivity of SPR has made it an important technology for measuring low-affinity, ultralow weight fragments (<200 Da) in the early stages of drug discovery. However, the biochemistry of membrane proteins, such as G-protein-coupled receptors (GPCRs), makes their SPR fragment screening particularly challenging, especially for native/wild-type, nonthermostabilized mutant receptors. In this study, we demonstrate the use of SPR-based biosensors to study the entire human family of adenosine receptors and present biologically active novel binders with a range of selectivity to human adenosine 2a receptor (hA2AR) from an ultralow weight fragment library and the public GlaxoSmithKline (GSK) kinase library. Thus, we demonstrate the ability of SPR to screen ultra-low-affinity fragments and identify biologically meaningful chemical equity and that SPR campaigns are highly effective "chemical filters" for screening small building block fragments that can be used to enable drug discovery programs.
RESUMO
Frontotemporal dementia and amyotrophic lateral sclerosis are clinically and pathologically overlapping disorders with shared genetic causes. We previously identified a disease locus on chromosome 16p12.1-q12.2 with genome-wide significant linkage in a large European Australian family with autosomal dominant inheritance of frontotemporal dementia and amyotrophic lateral sclerosis and no mutation in known amyotrophic lateral sclerosis or dementia genes. Here we demonstrate the segregation of a novel missense variant in CYLD (c.2155A>G, p.M719V) within the linkage region as the genetic cause of disease in this family. Immunohistochemical analysis of brain tissue from two CYLD p.M719V mutation carriers showed widespread glial CYLD immunoreactivity. Primary mouse neurons transfected with CYLDM719V exhibited increased cytoplasmic localization of TDP-43 and shortened axons. CYLD encodes a lysine 63 deubiquitinase and CYLD cutaneous syndrome, a skin tumour disorder, is caused by mutations that lead to reduced deubiquitinase activity. In contrast with CYLD cutaneous syndrome-causative mutations, CYLDM719V exhibited significantly increased lysine 63 deubiquitinase activity relative to the wild-type enzyme (paired Wilcoxon signed-rank test P = 0.005). Overexpression of CYLDM719V in HEK293 cells led to more potent inhibition of the cell signalling molecule NF-κB and impairment of autophagosome fusion to lysosomes, a key process in autophagy. Although CYLD mutations appear to be rare, CYLD's interaction with at least three other proteins encoded by frontotemporal dementia and/or amyotrophic lateral sclerosis genes (TBK1, OPTN and SQSTM1) suggests that it may play a central role in the pathogenesis of these disorders. Mutations in several frontotemporal dementia and amyotrophic lateral sclerosis genes, including TBK1, OPTN and SQSTM1, result in a loss of autophagy function. We show here that increased CYLD activity also reduces autophagy function, highlighting the importance of autophagy regulation in the pathogenesis of frontotemporal dementia and amyotrophic lateral sclerosis.
Assuntos
Esclerose Lateral Amiotrófica/genética , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/fisiologia , Demência Frontotemporal/genética , Predisposição Genética para Doença/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Autofagossomos/metabolismo , Autofagossomos/fisiologia , Axônios/patologia , Encéfalo/metabolismo , Proteínas de Ligação a DNA , Enzima Desubiquitinante CYLD/metabolismo , Enzimas Desubiquitinantes/metabolismo , Demência Frontotemporal/metabolismo , Camundongos , Mutação de Sentido Incorreto/genética , NF-kappa B/antagonistas & inibidores , Cultura Primária de Células , TransfecçãoRESUMO
Clusterin (CLU) is a pleiotropic glycoprotein that exists as a secreted, neuroprotective or intracellular, neurotoxic form, both of which increase in Alzheimer's disease (AD) causing increased Aß42 deposition. No studies have assessed the association between functionally distinct alloforms of CLU and tau protein or neuronal loss, despite its intracellular toxicity. We confirm previous reports of significant increases in both intracellular CLU and secreted CLU in the brain tissue of individuals with AD (p < 0.01) and show no association with neuronal loss. The increase in CLU alloforms was most closely associated with increases in both insoluble Aß42 and tau protein (p = 0.001), supporting its role in AD pathogenesis. Further research should investigate whether altering human CLU levels may have viability as a therapeutic option for AD.
Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Clusterina/metabolismo , Fragmentos de Peptídeos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Neurônios/patologiaRESUMO
Frontotemporal dementia (FTD) and Alzheimer's disease (AD) are the two common forms of dementia. FTD syndromes are characterized by lobar atrophy (frontotemporal lobar degeneration or FTLD) and the presence of either cellular TDP43 (FTLD-TDP), tau (FTLD-tau), or FUS aggregates, while extracellular ß-amyloid plaques and hyperphosphorylated tau tangles develop in AD. Oxidative stress can induce these pathological modifications in disease models, and is thought to play a role in these syndromes. Apolipoprotein D (apoD) is a glial-expressed lipocalin known to protect against oxidative stress, with increased levels in AD, supporting a protective role. The expression of apoD has not been studied in FTLD. This study assesses apoD expression in FTLD-TDP and FTLD-tau in comparison to AD and controls. It also analyzes the effect of apoD on TARDBP (TDP43 gene) and ß-amyloid precursor protein (APP). The expression of apoD was analyzed by Western blotting in FTLD-TDP, FTLD-tau, AD, and control post-mortem brain tissue. An apoD-overexpressing cell model was used to study the impact of increased apoD on APP and TARDBP expression. We confirm that apoD expression was increased in AD but surprisingly it was not affected in either of the two main pathological forms of FTLD. Under oxidative stress conditions, apoD had no effect on TDP43 expression but it did decrease APP expression. This suggests that apoD does not act as a neuroprotective factor in FTLD in the same way as in AD. This could contribute to the more rapid degeneration observed in FTLD.
Assuntos
Doença de Alzheimer/metabolismo , Apolipoproteínas D/genética , Demência Frontotemporal/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Apolipoproteínas D/metabolismo , Encéfalo/metabolismo , Linhagem Celular Tumoral , Feminino , Demência Frontotemporal/genética , Humanos , Masculino , Regulação para CimaRESUMO
The role of genetic variability in dementia with Lewy bodies (DLB) is now indisputable; however, data regarding copy number variation (CNV) in this disease has been lacking. Here, we used whole-genome genotyping of 1454 DLB cases and 1525 controls to assess copy number variability. We used 2 algorithms to confidently detect CNVs, performed a case-control association analysis, screened for candidate CNVs previously associated with DLB-related diseases, and performed a candidate gene approach to fully explore the data. We identified 5 CNV regions with a significant genome-wide association to DLB; 2 of these were only present in cases and absent from publicly available databases: one of the regions overlapped LAPTM4B, a known lysosomal protein, whereas the other overlapped the NME1 locus and SPAG9. We also identified DLB cases presenting rare CNVs in genes previously associated with DLB or related neurodegenerative diseases, such as SNCA, APP, and MAPT. To our knowledge, this is the first study reporting genome-wide CNVs in a large DLB cohort. These results provide preliminary evidence for the contribution of CNVs in DLB risk.
Assuntos
Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença/genética , Doença por Corpos de Lewy/genética , Proteínas Oncogênicas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Idoso de 80 Anos ou mais , Feminino , Genoma , Estudo de Associação Genômica Ampla , Humanos , Masculino , Proteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Aggregation of beta-amyloid protein (Abeta) to form oligomers is considered to be a key step in generating neurotoxicity in the Alzheimer's disease brain. Agents that bind to Abeta and inhibit oligomerization have been proposed as Alzheimer's disease therapeutics. In this study, we investigated the binding of fluorescein-labeled Abeta(1-42) (FluoAbeta(1-42)) to SH-SY5Y neuroblastoma cells and examined the effect of the 39-kDa receptor-associated protein (RAP), on the Abeta cell interaction. FluoAbeta(1-42) bound to the cells in a punctate pattern. Surprisingly, when RAP was added to the incubations, FluoAbeta(1-42) and RAP were found to be co-localized on the cell surface, suggesting that RAP and Abeta may bind to each other. Experiments using the purified proteins confirmed that a RAP-Abeta complex was stable and resistant to sodium dodecyl sulfate. RAP also inhibited Abeta oligomerization. We next examined whether RAP could inhibit the neurotoxic effects of Abeta. Addition of Abeta(1-42) to SH-SY5Y cells caused an increase in intracellular Ca2+ that was inhibited by treatment of the Abeta peptide with RAP. RAP also blocked an Abeta-induced inhibition of long-term memory consolidation in 1-day-old chicks. This study demonstrates that RAP binds to Abeta and is an inhibitor of the neurotoxic effects of Abeta.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/uso terapêutico , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/metabolismo , Peptídeos beta-Amiloides/farmacologia , Análise de Variância , Animais , Animais Recém-Nascidos , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal , Linhagem Celular Tumoral , Galinhas , Aprendizagem por Discriminação/efeitos dos fármacos , Modelos Animais de Doenças , Citometria de Fluxo/métodos , Fluoresceína/metabolismo , Humanos , Imunoprecipitação/métodos , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/farmacologia , Memória/efeitos dos fármacos , Microscopia de Força Atômica/métodos , Microscopia Confocal/métodos , Peso Molecular , Neuroblastoma , Síndromes Neurotóxicas/fisiopatologia , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Ligação Proteica , Transporte Proteico/efeitos dos fármacosRESUMO
Chronic neuroinflammation correlates with cognitive decline and brain atrophy in Alzheimer's disease (AD), and cytokines and chemokines mediate the inflammatory response. However, quantitation of cytokines and chemokines in AD brain tissue has only been carried out for a small number of mediators with variable results. We simultaneously quantified 17 cytokines and chemokines in brain tissue extracts from controls (n = 10) and from patients with and without genetic forms of AD (n = 12). Group comparisons accounting for multiple testing revealed that monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6) and interleukin-8 (IL-8) were consistently upregulated in AD brain tissue. Immunohistochemistry for MCP-1, IL-6 and IL-8 confirmed this increase and determined localization of these factors in neurons (MCP-1, IL-6, IL-8), astrocytes (MCP-1, IL-6) and plaque pathology (MCP-1, IL-8). Logistic linear regression modeling determined that MCP-1 was the most reliable predictor of disease. Our data support previous work on significant increases in IL-6 and IL-8 in AD but indicate that MCP-1 may play a more dominant role in chronic inflammation in AD.
Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Quimiocina CCL2/metabolismo , Inflamação/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Inflamação/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologiaRESUMO
Alzheimer's disease (AD) is characterized by Abeta peptide-containing plaques and tau-containing neurofibrillary tangles (NFTs). Both pathologies have been combined by crossing Abeta plaque-forming APP mutant mice with NFT-forming P301L tau mutant mice or by stereotaxically injecting beta-amyloid peptide 1-42 (Abeta42) into brains of P301L tau mutant mice. In cell culture, Abeta42 induces filamentous tau aggregates. To understand which processes are disrupted by Abeta42 in the presence of tau aggregates, we applied comparative proteomics to Abeta42-treated P301L tau-expressing neuroblastoma cells and the amygdala of P301L tau transgenic mice stereotaxically injected with Abeta42. Remarkably, a significant fraction of proteins altered in both systems belonged to the same functional categories, i.e. stress response and metabolism. We also identified model-specific effects of Abeta42 treatment such as differences in cell signaling proteins in the cellular model and of cytoskeletal and synapse associated proteins in the amygdala. By Western blotting (WB) and immunohistochemistry (IHC), we were able to show that 72% of the tested candidates were altered in human AD brain with a major emphasis on stress-related unfolded protein responsive candidates. These data highlight these processes as potentially important initiators in the Abeta42-mediated pathogenic cascade in AD and further support the role of unfolded proteins in the course of AD.