Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 70(3): 768-779, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36006886

RESUMO

INTRODUCTION: Histotripsy is a non-invasive focused ultrasound therapy that uses controlled acoustic cavitation to mechanically disintegrate tissue. To date, there are no reports investigating histotripsy for the treatment of soft tissue sarcoma (STS). OBJECTIVE: This study aimed to investigate the in vivo feasibility of ablating STS with histotripsy and to characterize the impact of partial histotripsy ablation on the acute immunologic response in canine patients with spontaneous STS. METHODS: A custom 500 kHz histotripsy system was used to treat ten dogs with naturally occurring STS. Four to six days after histotripsy, tumors were surgically resected. Safety was determined by monitoring vital signs during treatment and post-treatment physical examinations, routine lab work, and owners' reports. Ablation was characterized using radiologic and histopathologic analyses. Systemic immunological impact was evaluated by measuring changes in cytokine concentrations, and tumor microenvironment changes were evaluated by characterizing changes in infiltration with tumor-associated macrophages (TAMs) and tumor-infiltrating lymphocytes (TILs) using multiplex immunohistochemistry and differential gene expression. RESULTS: Results showed histotripsy ablation was achievable and well-tolerated in all ten dogs. Immunological results showed histotripsy induced pro-inflammatory changes in the tumor microenvironment. Conclusion & Significance: Overall, this study demonstrates histotripsy's potential as a precise, non-invasive treatment for STS.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Sarcoma , Cães , Animais , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Sarcoma/diagnóstico por imagem , Sarcoma/terapia , Microambiente Tumoral
2.
IEEE Trans Biomed Eng ; PP2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35834467

RESUMO

OBJECTIVE: Osteosarcoma (OS) is a devastating primary bone tumor in dogs and humans with limited non-surgical treatment options. As the first completely non-invasive and non-thermal ablation technique, histotripsy has the potential to significantly improve the standard of care for patients with primary bone tumors. INTRODUCTION: Standard of care treatment for primary appendicular OS involves surgical resection via either limb amputation or limb-salvage surgery for suitable candidates. Biological similarities between canine and human OS make the dog an informative comparative oncology research model to advance treatment options for primary OS. Evaluating histotripsy for ablating spontaneous canine primary OS will build a foundation upon which histotripsy can be translated clinically into a standard of care therapy for canine and human OS. METHODS: Five dogs with suspected spontaneous OS were treated with a 500 kHz histotripsy system guided by real-time ultrasound image guidance. Spherical ablation volumes within each tumor (1.25-3 cm in diameter) were treated with single cycle histotripsy pulses applied at a pulse repetition frequency of 500 Hz and a dose of 500 pulses/point. RESULTS: Tumor ablation was successfully identified grossly and histologically within the targeted treatment regions of all subjects. Histotripsy treatments were well-tolerated amongst all patients with no significant clinical adverse effects. Conclusion & Significance: Histotripsy safely and effectively ablated the targeted treatment volumes in all subjects, demonstrating its potential to serve as a non-invasive treatment modality for primary bone tumors.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34478363

RESUMO

New therapeutic strategies are direly needed in the fight against cancer. Over the last decade, several tumor ablation strategies have emerged as stand-alone or combination therapies. Histotripsy is the first completely noninvasive, nonthermal, and nonionizing tumor ablation method. Histotripsy can produce consistent and rapid ablations, even near critical structures. Additional benefits include real-time image guidance, high precision, and the ability to treat tumors of any predetermined size and shape. Unfortunately, the lack of clinically and physiologically relevant preclinical cancer models is often a significant limitation with all focal tumor ablation strategies. The majority of studies testing histotripsy for cancer treatment have focused on small animal models, which have been critical in moving this field forward and will continue to be essential for providing mechanistic insight. While these small animal models have notable translational value, there are significant limitations in terms of scale and anatomical relevance. To address these limitations, a diverse range of large animal models and spontaneous tumor studies in veterinary patients have emerged to complement existing rodent models. These models and veterinary patients are excellent at providing realistic avenues for developing and testing histotripsy devices and techniques designed for future use in human patients. Here, we provide a review of animal models used in preclinical histotripsy studies and compare histotripsy ablation in these models using a series of original case reports across a broad spectrum of preclinical animal models and spontaneous tumors in veterinary patients.


Assuntos
Técnicas de Ablação , Ablação por Ultrassom Focalizado de Alta Intensidade , Neoplasias , Animais , Humanos , Modelos Animais , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA