Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Discov Med ; 36(180): 1-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273742

RESUMO

The tumor microenvironment (TME) exerts a profound influence on the oncogenesis and progression of various cancers, notably those instigated by the human papillomavirus (HPV) and the Epstein-Barr virus (EBV). The etiology of HPV and EBV-associated malignancies is rooted in intricate interactions that intertwine viral infections, genetic predispositions, and distinct TME dynamics. These interactions foster a milieu that can either support or hinder tumorigenic progression. Gaining in-depth knowledge of the TME's unique features, including its cellular composition, cytokine profiles, and metabolic alterations specific to HPV and EBV-associated cancers, is fundamental to innovating more efficacious therapeutic strategies. This review delineates the intricate roles of HPV and EBV in shaping the TME and expounds upon the unique TME characteristics specific to HPV and EBV-driven cancers. Additionally, we spotlight innovative approaches to remodel the TME, aiming to augment therapeutic efficacy in combatting HPV and EBV-associated neoplasms.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias , Infecções por Papillomavirus , Humanos , Herpesvirus Humano 4 , Infecções por Vírus Epstein-Barr/complicações , Infecções por Papillomavirus/complicações , Papillomavirus Humano , Microambiente Tumoral , Carcinogênese , Papillomaviridae/genética
2.
J Dermatol Sci ; 112(2): 83-91, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37865581

RESUMO

BACKGROUND: Cutaneous T cell lymphoma (CTCL) is a T cell-derived non-Hodgkin lymphoma primarily affecting the skin, with treatment posing a significant challenge and low survival rates. OBJECTIVE: In this study, we investigated the anti-cancer potential of Neosetophomone B (NSP-B), a fungal-derived secondary metabolite, on CTCL cell lines H9 and HH. METHODS: Cell viability was measured using Cell counting Kit-8 (CCK8) assays. Apoptosis was measured by annexin V/PI dual staining. Immunoblotting was performed to examine the expression of proteins. Applied Biosystems' high-resolution Human Transcriptome Array 2.0 was used to examine gene expression. RESULTS: NSP-B induced apoptosis in CTCL cells by activating mitochondrial signaling pathways and caspases. We observed downregulated expression of BUB1B, Aurora Kinases A and B, cyclin-dependent kinases (CDKs) 4 and 6, and polo-like kinase 1 (PLK1) in NSP-B treated cells, which was further corroborated by Western blot analysis. Notably, higher expression levels of these genes showed reduced overall and progression-free survival in the CTCL patient cohort. FOXM1 and BUB1B expression exhibited a dose-dependent reduction in NSP-B-treated CTCL cells.FOXM1 silencing decreased cell viability and increased apoptosis via BUB1B downregulation. Moreover, NSP-B suppressed FOXM1-regulated genes, such as Aurora Kinases A and B, CDKs 4 and 6, and PLK1. The combined treatment of Bortezomib and NSP-B showed greater efficacy in reducing CTCL cell viability and promoting apoptosis compared to either treatment alone. CONCLUSION: Our findings suggest that targeting the FOXM1 pathway may provide a promising therapeutic strategy for CTCL management, with NSP-B offering significant potential as a novel treatment option.


Assuntos
Linfoma Cutâneo de Células T , Neoplasias Cutâneas , Humanos , Apoptose , Aurora Quinase A/metabolismo , Aurora Quinase A/uso terapêutico , Linhagem Celular Tumoral , Proteína Forkhead Box M1/efeitos dos fármacos , Proteína Forkhead Box M1/metabolismo , Linfoma Cutâneo de Células T/tratamento farmacológico , Linfoma Cutâneo de Células T/patologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Terpenos/farmacologia , Terpenos/uso terapêutico
3.
Leuk Lymphoma ; 64(14): 2236-2248, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37708450

RESUMO

Cutaneous T cell lymphoma (CTCL) is a varied group of neoplasms that affects the skin. Acquired resistance against chemotherapeutic drugs and associated toxic side effects are limitations that warrant search for novel drugs against CTCL. Embelin (EMB) is a naturally occurring benzoquinone derivative that has gained attention owing to its anticancer pharmacological actions and nontoxic nature. We assessed the anticancer activity of EMB against CTCL cell lines, HuT78, and H9. EMB inhibited viability of CTCL cells in a dose-dependent manner. EMB activated extrinsic and intrinsic pathways of apoptosis as shown by the activation of initiator and executioner caspases. EMB-induced apoptosis also involved suppression of inhibitors of apoptosis, XIAP, cIAP1, and cIAP2. PARP cleavage and upregulation of pH2AX indicated DNA damage induced by EMB. In conclusion, we characterized a novel apoptosis-inducing activity of EMB against CTCL cells, implicating EMB as a potential therapeutic agent against CTCL.


Assuntos
Linfoma Cutâneo de Células T , Neoplasias Cutâneas , Humanos , Apoptose , Linfoma Cutâneo de Células T/tratamento farmacológico , Linfoma Cutâneo de Células T/genética , Linfoma Cutâneo de Células T/metabolismo , Benzoquinonas/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral
4.
Semin Cancer Biol ; 86(Pt 3): 107-121, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35931301

RESUMO

Since the introduction of the cancer stem cell (CSC) paradigm, significant advances have been made in understanding the functional and biological plasticity of these elusive components in malignancies. Endowed with self-renewing abilities and multilineage differentiation potential, CSCs have emerged as cellular drivers of virtually all facets of tumor biology, including metastasis, tumor recurrence/relapse, and drug resistance. The functional and biological characteristics of CSCs, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation are regulated by an array of extracellular factors, signaling pathways, and pluripotent transcriptional factors. Besides the well-characterized regulatory role of transcription factors OCT4, SOX2, NANOG, KLF4, and MYC in CSCs, evidence for the central role of Forkhead box transcription factor FOXM1 in the establishment, maintenance, and functions of CSCs is accumulating. Conventionally identified as a master regulator of the cell cycle, a comprehensive understanding of this molecule has revealed its multifarious oncogenic potential and uncovered its role in angiogenesis, invasion, migration, self-renewal, and drug resistance. This review compiles the large body of literature that has accumulated in recent years that provides evidence for the mechanisms by which FOXM1 expression promotes stemness in glioblastoma, breast, colon, ovarian, lung, hepatic, and pancreatic carcinomas. We have also compiled the data showing the association of stem cell mediators with FOXM1 using TCGA mRNA expression data. Further, the prognostic importance of FOXM1 and other stem cell markers is presented. The delineation of FOXM1-mediated regulation of CSCs can aid in the development of molecularly targeted pharmacological approaches directed at the selective eradication of CSCs in several human malignancies.


Assuntos
Glioblastoma , Recidiva Local de Neoplasia , Humanos , Células-Tronco Neoplásicas , Transdução de Sinais , Fatores de Transcrição Forkhead , Proteína Forkhead Box M1/genética
5.
Front Oncol ; 12: 929996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847923

RESUMO

Abnormal expression of Forkhead box protein M1 (FOXM1) and serine/threonine kinase Budding uninhibited by benzimidazoles 1 (BUB1B) contributes to the development and progression of several cancers, including chronic myelogenous leukemia (CML). However, the molecular mechanism of the FOXM1/BUB1B regulatory network and the role of Neosetophomone-B (NSP-B) in leukemia remains unclear. NSP-B, a meroterpenoid fungal secondary metabolite, possesses anticancer potential in human leukemic cells lines; however, the underlying mechanism has not been elucidated. The present study aimed to explore the role of NSP-B on FOXM1/BUB1B signaling and the underlying molecular mechanism of apoptosis induction in leukemic cells. We performed gene expression profiling of NSP-B-treated and untreated leukemic cells to search for differentially expressed genes (DEGs). Interestingly BUB1B was found to be significantly downregulated (logFC -2.60, adjusted p = 0.001) in the treated cell line with the highest connectivity score among cancer genes. Analysis of TCGA data revealed overexpression of BUB1B compared to normal in most cancers and overexpression was associated with poor prognosis. BUB1B also showed a highly significant positive correlation with FOXM1 in all the TCGA cancer types. We used human leukemic cell lines (K562 and U937) as an in vitro study model to validate our findings. We found that NSP-B treatment of leukemic cells suppressed the expression of FOXM1 and BUB1B in a dose-dependent manner. In addition, NSP-B also resulted in the downregulation of FOXM1-regulated genes such as Aurora kinase A, Aurora kinase B, CDK4, and CDK6. Suppression of FOXM1 either by siRNA or NSP-B reduced BUB1B expression and enhanced cell survival inhibition and induction of apoptosis. Interestingly combination treatment of thiostrepton and NSP-B suppressed of cell viability and inducted apoptosis in leukemic cells via enhancing the activation of caspase-3 and caspase-8 compared with single-agent treatment. These results demonstrate the important role of the FOXM1/BUB1B pathway in leukemia and thus a potential therapeutic target.

6.
Semin Cancer Biol ; 83: 152-165, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-32858230

RESUMO

The global burden of breast cancer (BC) is increasing significantly. This trend is caused by several factors such as late diagnosis, limited treatment options for certain BC subtypes, drug resistance which all lead to poor clinical outcomes. Recent research has reported the role of epigenetic alterations in the mechanism of BC pathogenesis and its hallmarks include drug resistance and stemness features. The understanding of these modifications and their significance in the management of BC carcinogenesis is challenging and requires further attention. Nevertheless, it promises to provide novel insight needed for utilizing these alterations as potential diagnostic, prognostic markers, predict treatment efficacy, as well as therapeutic agents. This highlights the importance of continuing research development to further advance the existing knowledge on epigenetics and BC carcinogenesis to overcome the current challenges. Hence, this review aims to shed light and discuss the current state of epigenetics research in the diagnosis and management of BC.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Carcinogênese , Metilação de DNA , Epigênese Genética , Epigenômica , Feminino , Humanos
7.
Semin Cancer Biol ; 83: 208-226, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-32717336

RESUMO

Skin, the largest organ of human body, is vital for the existence and survival of human beings. Further, developmental and physiological mechanisms associated with cutaneous biology are vital for homeostasis as their deregulations converge towards pathogenesis of a number of skin diseases, including cancer. It has now been well accepted that most of the transcribed human genome lacks protein translational potential and has been termed as non-coding RNAs (nc-RNAs), which includes circular RNA (circRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), micro RNA (miRNA), long noncoding RNA (lncRNA), and piwi-interacting RNA (piRNAs). These nc-RNAs have gained great attention in both preclinical and clinical research as they are critical in most of the regulatory mechanisms of biological homeostasis and disease development by controlling the gene expression at transcriptional, post-transcriptional and epigenetic level. In this review we have illustrated how nc-RNAs are critical in the development and maintenance of cutaneous homeostasis and functioning and also, most importantly, how the dysregulated expression and functioning of nc-RNAs play critical role in the pathogenesis of cutaneous diseases including cancer and the autoimmune skin diseases. Considering the vital role of nc-RNAs in cancer resistance, metastasis and autoimmune diseases, we have also highlighted their role as promising prognostic and therapeutic targets for the cutaneous diseases.


Assuntos
Doenças Autoimunes , MicroRNAs , RNA Longo não Codificante , Neoplasias Cutâneas , Doenças Autoimunes/genética , Humanos , RNA Longo não Codificante/genética , RNA Nucleolar Pequeno/genética , RNA não Traduzido/genética , Neoplasias Cutâneas/genética
9.
Sci Rep ; 11(1): 13452, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188094

RESUMO

The advent of personalised medicine promises a deeper understanding of mechanisms and therefore therapies. However, the connection between genomic sequences and clinical treatments is often unclear. We studied 50 breast cancer patients belonging to a population-cohort in the state of Qatar. From Sanger sequencing, we identified several new deleterious mutations in the estrogen receptor 1 gene (ESR1). The effect of these mutations on drug treatment in the protein target encoded by ESR1, namely the estrogen receptor, was achieved via rapid and accurate protein-ligand binding affinity interaction studies which were performed for the selected drugs and the natural ligand estrogen. Four nonsynonymous mutations in the ligand-binding domain were subjected to molecular dynamics simulation using absolute and relative binding free energy methods, leading to the ranking of the efficacy of six selected drugs for patients with the mutations. Our study shows that a personalised clinical decision system can be created by integrating an individual patient's genomic data at the molecular level within a computational pipeline which ranks the efficacy of binding of particular drugs to variant proteins.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama , Receptor alfa de Estrogênio/genética , Mutação , Proteínas de Neoplasias/genética , Medicina de Precisão , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Humanos
10.
Eur J Med Genet ; 63(10): 104023, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32735948

RESUMO

Tufting enteropathy (TE) is a rare autosomal recessive congenital enteropathy that usually requires long-term parenteral nutrition (PN). In the Arabic Peninsula, four distinct EPCAM mutations have been identified to cause TE. As consanguineous marriages are socially favored, pre-marital and pre-conception testing has become a critical disease prevention strategy. This study aimed to identify the pathogenic EPCAM mutations causing TE in Qatari families and determine possible genotype-phenotype correlations. Twenty-two TE patients from seven multiplex families with TE were identified. Blood samples were collected from patients and first-degree relatives. Exons of the gene were amplified and sequenced. Retrospective chart review and/or family interviews were conducted to determine phenotypic characteristics of the disease. Sequence analysis revealed a single, previously described c.499dup mutation in exon 5 of all families tested, suggesting a founder effect. Of the 18 patients whose full clinical information was available, three patients (17%) were off PN with a good quality of life, without intestinal transplantation, and one (6%) was receiving partial PN. Our patients with TE were severely stunted compared to a similar group of patients receiving long-term PN for short bowel syndrome, suggesting that this could possibly be due to TE rather than secondary to inadequate nutrition. Our study identified the EPCAM mutation c.499dup as the genetic defect causing TE in all the participant Qatari families. This finding should facilitate early diagnosis of TE and genetic counseling. Furthermore, it should aid in the prevention of TE through pre-marital screening, antenatal diagnosis, and pre-implantation genetic diagnosis.


Assuntos
Diarreia Infantil/diagnóstico , Diarreia Infantil/genética , Molécula de Adesão da Célula Epitelial/genética , Síndromes de Malabsorção/diagnóstico , Síndromes de Malabsorção/genética , Consanguinidade , Diarreia Infantil/sangue , Diarreia Infantil/fisiopatologia , Molécula de Adesão da Célula Epitelial/sangue , Éxons , Família , Feminino , Efeito Fundador , Estudos de Associação Genética , Aconselhamento Genético , Humanos , Lactente , Síndromes de Malabsorção/sangue , Síndromes de Malabsorção/fisiopatologia , Masculino , Mutação , Linhagem , Catar , Estudos Retrospectivos , Análise de Sequência de DNA
11.
Cancers (Basel) ; 12(6)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32532107

RESUMO

Human papillomavirus (HPV) has been implicated in the etiology of a variety of human cancers. Studies investigating the presence of high-risk (HR) HPV in breast tissue have generated considerable controversy over its role as a potential risk factor for breast cancer (BC). This is the first investigation reporting the prevalence and type distribution of high-risk HPV infection in breast tissue in the population of Qatar. A prospective comparison blind research study herein reconnoitered the presence of twelve HR-HPV types' DNA using multiplex PCR by screening a total of 150 fresh breast tissue specimens. Data obtained shows that HR-HPV types were found in 10% of subjects with breast cancer; of which the presence of HPV was confirmed in 4/33 (12.12%) of invasive carcinomas. These findings, the first reported from the population of Qatar, suggest that the selective presence of HPV in breast tissue is likely to be a related factor in the progression of certain cases of breast cancer.

12.
Genet Test Mol Biomarkers ; 22(12): 714-718, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30461311

RESUMO

Background: Escobar syndrome, a nonlethal variant of multiple pterygium syndromes (MPS), is a rare autosomal recessive disorder characterized by pterygia and multiple joint contractures along with other anomalies. Variants in cholinergic receptor nicotinic gamma subunit (CHRNG) have been previously reported in patients with Escobar syndrome. Objective: We studied a consanguineous Pakistani family affected with Escobar syndrome to identify the underlying genetic defect through short tandem repeat (STR) genotyping and direct DNA sequencing. Results: Genotyping with microsatellite markers (D2S427, D2S2344, and D2S206) revealed linkage of the disease phenotype in the family to the CHRNG locus. Using Sanger sequencing, we identified a homozygous nonsense CHRNG variant c.136C>T (p.R46*), predicted to produce a truncated protein that leads to acetylcholine receptor deficiency, causing MPS. The unaffected parents and siblings in the family were heterozygous carriers of this disease-causing variant. Conclusion: We report the identification of a nonsense CHRNG variant in a consanguineous Pakistani family affected with Escobar syndrome.


Assuntos
Anormalidades Múltiplas/genética , Códon sem Sentido , Hipertermia Maligna/genética , Receptores Nicotínicos/genética , Anormalidades da Pele/genética , Anormalidades Múltiplas/etnologia , Consanguinidade , Feminino , Genes Recessivos , Genótipo , Humanos , Masculino , Hipertermia Maligna/etnologia , Repetições de Microssatélites , Paquistão , Linhagem , Fenótipo , Receptores Nicotínicos/deficiência , Anormalidades da Pele/etnologia
13.
Eur J Med Genet ; 57(1): 21-4, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24269551

RESUMO

Temtamy preaxial brachydactyly syndrome (TPBS) is an autosomal recessive rare disorder characterized by hyperphalangism of digits, facial dysmorphism, dental anomalies, sensorineural hearing loss, delayed motor and mental development, and growth retardation. Loss of function mutations have been recently reported in the CHSY1 gene to cause the TPBS. Here, we report a novel missense mutation (c.1897 G > A) in the CHSY1 gene in two TPBS patients from a consanguineous Pakistani family. The mutation predicted substitution of a highly conserved aspartate amino acid residue to asparagine at position 633 in the protein (D633N). Polyphen analysis supported the pathogenicity of D36N mutation. Our finding extends the body of recent evidence that supports the role of CHSY1 as a potential mediator of BMP signaling.


Assuntos
Braquidactilia/genética , Surdez/genética , Deficiência Intelectual/genética , Anormalidades da Boca/genética , Mutação de Sentido Incorreto , N-Acetilgalactosaminiltransferases/genética , Anormalidades Dentárias/genética , Sequência de Aminoácidos , Sequência de Bases , Braquidactilia/diagnóstico por imagem , Criança , Consanguinidade , Sequência Conservada , Análise Mutacional de DNA , Surdez/diagnóstico por imagem , Feminino , Estudos de Associação Genética , Glucuronosiltransferase , Humanos , Deficiência Intelectual/diagnóstico por imagem , Masculino , Dados de Sequência Molecular , Anormalidades da Boca/diagnóstico por imagem , Enzimas Multifuncionais , Paquistão , Linhagem , Radiografia , Anormalidades Dentárias/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA