Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 367: 114451, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37257716

RESUMO

AIMS: Intracerebral hemorrhage (ICH) is a severe neurological condition with high mortality and morbidity. Microglia activation and peripheral inflammatory cells infiltration play an important role in ICH prognosis. Previous studies demonstrated that regulatory T cells (Tregs) ameliorated neuroinflammation following experimental ICH. However, the molecular mechanism underlying such effects of Tregs remains unclear. The objective was to examine how Tregs recruitment induced by recombinant CC chemokine ligand 17 (rCCL17) influences microglia/macrophage polarization in an intrastriatal autologous blood injection ICH animal model, and to determine if TGFß/TGFß-R/Smad2/3 pathway was involved. METHODS: 380 adult CD1 mice (male, eight weeks old) were subjected to sham surgery or autologous blood injection induced ICH. A CD25-specific mouse antibody or isotype control mAb was injected intraventricular (i.c.v) 48 h prior to ICH induction to deplete Tregs. rCCL17, a CC chemokine receptor 4 (CCR4) ligand, was delivered intranasally at 1 h post-ICH. SB431542, a specific inhibitor of TGF-ß was administered intraperitoneally 1 h before ICH induction. Following the ICH, neurobehavioral testing, brain edema, hematoma volume, hemoglobin content, western blotting, double immunofluorescence labeling, and immunohistochemistry were performed. RESULTS: Endogenous expressions of CCL17, Tregs marker Foxp3, and the number of Tregs in perihematomal region increased following ICH. Tregs depletion with a CD25 antibody aggravated neurological deficits and brain edema, increased inflammatory cytokines, neutrophil infiltration, oxidative stress, and reduced the rate of hematoma resolution in ICH mice. rCCL17 treatment increased the number of Tregs in the brain, ameliorated neurological deficits and brain edema after ICH, and promoted microglia/macrophage polarization toward M2 phenotype which was reversed with CD25 antibody. Moreover, rCCL17 increased the expressions of brain TGF-ß/phosphorylated-Smad2/3 which was abrogated with the selective TGFß inhibitor SB431542. CONCLUSIONS: rCCL17-mediated Tregs recruitment may be a potential therapeutic strategy to promote M2 microglia/macrophages polarization and alleviate early brain injury following ICH.


Assuntos
Edema Encefálico , Microglia , Camundongos , Masculino , Animais , Microglia/metabolismo , Edema Encefálico/metabolismo , Quimiocinas CC/metabolismo , Quimiocinas CC/uso terapêutico , Linfócitos T Reguladores , Ligantes , Macrófagos/metabolismo , Hemorragia Cerebral/metabolismo , Fatores Imunológicos , Modelos Animais de Doenças , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/uso terapêutico , Hematoma/metabolismo
2.
J Cereb Blood Flow Metab ; 43(6): 869-881, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36802818

RESUMO

Leukocyte common antigen-related phosphatase (LAR) is widely expressed in the central nervous system and is known to regulate a variety of processes including cell growth, differentiation, and inflammation. However, little is currently known about LAR signaling mediated neuroinflammation after intracerebral hemorrhage (ICH). The objective of this study was to investigate the role of LAR in ICH using autologous blood injection-induced ICH mouse model. Expression of endogenous proteins, brain edema and neurological function after ICH were evaluated. Extracellular LAR peptide (ELP), an inhibitor of LAR, was administered to ICH mice and outcomes were evaluated. LAR activating-CRISPR or IRS inhibitor NT-157 was administered to elucidate the mechanism. The results showed that expressions of LAR, its endogenous agonist chondroitin sulfate proteoglycans (CSPGs) including neurocan and brevican, and downstream factor RhoA increased after ICH. Administration of ELP reduced brain edema, improved neurological function, and decreased microglia activation after ICH. ELP decreased RhoA and phosphorylated serine-IRS1, increased phosphorylated tyrosine-IRS1 and p-Akt, and attenuated neuroinflammation after ICH, which was reversed by LAR activating-CRISPR or NT-157. In conclusion, this study demonstrated that LAR contributed to neuroinflammation after ICH via RhoA/IRS-1 pathway, and ELP may be a potential therapeutic strategy to attenuate LAR mediated neuroinflammation after ICH.


Assuntos
Edema Encefálico , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doenças Neuroinflamatórias , Edema Encefálico/tratamento farmacológico , Transdução de Sinais , Hemorragia Cerebral/complicações , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo
3.
Fluids Barriers CNS ; 18(1): 44, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565396

RESUMO

BACKGROUND: Destruction of blood-brain barrier (BBB) ​​is one of the main mechanisms of secondary brain injury following intracerebral hemorrhage (ICH). Frizzled-7 is a key protein expressed on the surface of endothelial cells that controls vascular permeability through the Wnt-canonical pathway involving WNT1-inducible signaling pathway protein 1 (WISPI). This study aimed to investigate the role of Frizzled-7 signaling in BBB preservation after ICH in mice. METHODS: Adult CD1 mice were subjected to sham surgery or collagenase-induced ICH. Frizzled-7 activation or knockdown was performed by administration of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) by intracerebroventricular injection at 48 h before ICH induction. WISP1 activation or WISP1 knockdown was performed to evaluate the underlying signaling pathway. Post-ICH assessments included neurobehavior, brain edema, BBB permeability, hemoglobin level, western blot and immunofluorescence. RESULTS: The brain expressions of Frizzled-7 and WISP1 significantly increased post-ICH. Frizzled-7 was expressed in endothelial cells, astrocytes, and neurons after ICH. Activation of Frizzled-7 significantly improved neurological function, reduced brain water content and attenuated BBB permeability to large molecular weight substances after ICH. Whereas, knockdown of Frizzled-7 worsened neurological function and brain edema after ICH. Activation of Frizzled-7 significantly increased the expressions of Dvl, ß-Catenin, WISP1, VE-Cadherin, Claudin-5, ZO-1 and reduced the expression of phospho-ß-Catenin. WISP1 knockdown abolished the effects of Frizzled-7 activation on the expressions of VE-Cadherin, Claudin-5 and ZO-1 at 24 h after ICH. CONCLUSIONS: Frizzled-7 activation potentially attenuated BBB permeability and improved neurological deficits after ICH through Dvl​​/ß-Catenin/WISP1 pathway. Frizzled-7 may be a potential target for the development of ICH therapeutic drugs.


Assuntos
Barreira Hematoencefálica , Proteínas de Sinalização Intercelular CCN/metabolismo , Hemorragia Cerebral , Proteínas Desgrenhadas/metabolismo , Receptores Frizzled/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , beta Catenina/metabolismo , Animais , Comportamento Animal , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/fisiopatologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos CFTR , Transdução de Sinais/fisiologia
4.
J Neuroinflammation ; 18(1): 62, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648537

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH), a devastating subtype of stroke, is associated with high mortality and morbidity. Neuroinflammation is an important factor leading to ICH-induced neurological injuries. C-C Chemokine Receptor 4 (CCR4) plays an important role in enhancing hematoma clearance after ICH. However, it is unclear whether CCR4 activation can ameliorate neuroinflammation and apoptosis of neurons following ICH. The aim of the present study was to examine the effects of recombinant CCL17 (rCCL17)-dependent CCR4 activation on neuroinflammation and neuronal apoptosis in an intrastriatal autologous blood injection ICH model, and to determine whether the PI3K/AKT/Foxo1 signaling pathway was involved. METHODS: Two hundred twenty-six adult (8-week-old) male CD1 mice were randomly assigned to sham and ICH surgery groups. An intrastriatal autologous blood injection ICH model was used. rCCL17, a CCR4 ligand, was delivered by intranasal administration at 1 h, 3 h, and 6 h post-ICH. CCL17 antibody was administrated by intraventricular injection at 1 h post-ICH. C021, a specific inhibitor of CCR4 and GDC0068, an AKT inhibitor were delivered intraperitoneally 1 h prior to ICH induction. Brain edema, neurobehavioral assessments, western blotting, Fluoro-Jade C staining, terminal deoxynucleotidyl transferase dUTP nick end labeling, and immunofluorescence staining were conducted. RESULTS: Endogenous expression of CCL17 and CCR4 were increased following ICH, peaking at 5 days post-induction. CCR4 was found to co-localize with microglia, neurons, and astrocytes. rCCL17 treatment decreased brain water content, attenuated short- and long-term neurological deficits, deceased activation of microglia/macrophages and infiltration of neutrophils, and inhibited neuronal apoptosis in the perihematomal region post-ICH. Moreover, rCCL17 treatment post-ICH significantly increased the expression of CCR4, PI3K, phosphorylated AKT, and Bcl-2, while Foxo1, IL-1ß, TNF-α, and Bax expression were decreased. The neuroprotective effects of rCCL17 were reversed with the administration of C021 or GDC0068. CONCLUSIONS: rCCL17-dependent CCR4 activation ameliorated neurological deficits, reduced brain edema, and ameliorated neuroinflammation and neuronal apoptosis, at least in part, through the PI3K/AKT/Foxo1 signaling pathway after ICH. Thus, activation of CCR4 may provide a promising therapeutic approach for the early management of ICH.


Assuntos
Hemorragia Cerebral/patologia , Quimiocina CCL17/metabolismo , Neurônios/patologia , Receptores CCR4/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose/fisiologia , Encéfalo/metabolismo , Encéfalo/patologia , Hemorragia Cerebral/metabolismo , Proteína Forkhead Box O1/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes
5.
Brain Behav Immun ; 91: 615-626, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33035633

RESUMO

Lysophosphatidic acid receptor 1 (LPA1) plays a critical role in proinflammatory processes in the central nervous system by modulating microglia activation. The aim of this study was to explore the anti-inflammatory effects and neurological function improvement of LPA1 inhibition after intracerebral haemorrhage (ICH) in mice and to determine whether prostaglandin E2 (PGE2), E-type prostaglandin receptor 2 (EP2), and NADPH oxidase 2 (NOX2) signalling are involved in LPA1-mediated neuroinflammation. ICH was induced in CD1 mice by autologous whole blood injection. AM966, a selective LPA1 antagonist, was administered by oral gavage 1 h and 12 h after ICH. The LPA1 endogenous ligand, LPA was administered to verify the effect of LPA1 activation. To elucidate potential inflammatory mechanisms of LPA1, the selective EP2 activator butaprost was administered by intracerebroventricular injection with either AM966 or LPA1 CRISPR knockout (KO). Water content of the brain, neurobehavior, immunofluorescence staining, and western blot were performed. After ICH, EP2 was expressed in microglia whereas LPA1 was expressed in microglia, neurons, and astrocytes, which peaked after 24 h. AM966 inhibition of LPA1 improved neurologic function, reduced brain oedema, and suppressed perihematomal inflammatory cells after ICH. LPA administration aggravated neurological deficits after ICH. AM966 treatment and LPA1 CRISPR KO both decreased the expressions of PGE2, EP2, NOX2, NF-κB, TNF-α, IL-6, and IL-1ß expressions after ICH, which was reversed by butaprost. This study demonstrated that inhibition of LPA1 attenuated neuroinflammation caused by ICH via PGE2/EP2/NOX2 signalling pathway in mice, which consequently improved neurobehavioral functions and alleviated brain oedema. LPA1 may be a promising therapeutic target to attenuate ICH-induced secondary brain injury.


Assuntos
Hemorragia Cerebral/tratamento farmacológico , Dinoprostona , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Transdução de Sinais , Animais , Camundongos , NADPH Oxidase 2 , Receptores de Prostaglandina
6.
Expert Opin Ther Targets ; 24(8): 805-818, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32378435

RESUMO

Introduction: Slit2 is an extracellular matrix protein that regulates migration of developing axons during central nervous system (CNS) development. Roundabout (Robo) receptors expressed by various cell types in the CNS, mediate intracellular signal transduction pathways for Slit2. Recent studies indicate that Slit2 plays important protective roles in a myriad of processes such as cell migration, immune response, vascular permeability, and angiogenesis in CNS pathologies. Areas covered: This review provides an overview of the diverse functions of Slit2 in CNS disorders and discusses the potential of Slit2 as a therapeutic target. We reviewed preclinical studies reporting the role of Slit2 in various CNS disease models, transgenic animal research, and rodent models that utilized Slit2 as a therapy. Expert opinion: Slit2 exerts a wide array of beneficial effects ranging from anti-migration, blood-brain barrier (BBB) protection, inhibition of peripheral immune cell infiltration, and anti-apoptosis in various disease models. However, a dual role of Slit2 in endothelial permeability has been observed in transgenic animals. Further research on Slit2 will be crucial including key issues such as effects of transgenic overexpression versus exogenous Slit2, function of Slit2 dependent on cellular expression of Robo receptors and the underlying pathology for potential clinical translation.


Assuntos
Doenças do Sistema Nervoso Central/terapia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Terapia de Alvo Molecular , Proteínas do Tecido Nervoso/metabolismo , Animais , Animais Geneticamente Modificados , Barreira Hematoencefálica/metabolismo , Movimento Celular/fisiologia , Doenças do Sistema Nervoso Central/fisiopatologia , Modelos Animais de Doenças , Humanos , Receptores Imunológicos/metabolismo , Proteínas Roundabout
7.
J Neuroinflammation ; 17(1): 168, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32466767

RESUMO

BACKGROUND: Neuroinflammation is an important host defense response to secondary brain injury after intracerebral hemorrhage (ICH). Triggering receptor expressed on myeloid cells 2 (TREM2) confers strong neuroprotective effects by attenuating neuroinflammation in experimental ischemic stroke. Recent studies suggest that apolipoprotein E (apoE) is a novel, high-affinity ligand of TREM2. This study aimed to investigate the effects of TREM2 activation on neuroinflammation and neuronal apoptosis in a mouse model of ICH. METHODS: Adult male CD1 mice (n = 216) were subjected to intrastriatal injection of bacterial collagenase. The TREM2 ligand, apoE-mimetic peptide COG1410 was administered intranasally at 1 h after ICH induction. To elucidate the underlying mechanism, TREM2 small interfering RNA (siRNA) and the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 were administered intracerebroventricularly prior to COG1410 treatment. Neurobehavioral tests, brain water content, immunofluorescence, western blotting, and Fluoro-Jade C- and terminal deoxynucleotidyl transferase dUTP nick end labeling staining were performed. RESULTS: Endogenous TREM2 expression was increased and peaked at 24 h after ICH. TREM2 was expressed on microglia, astrocytes, and neurons. COG1410 improved both short-term and long-term neurological functions, reduced brain edema, inhibited microglia/macrophage activation and neutrophil infiltration, and suppressed neuronal apoptotic cell death in perihematomal areas after ICH. Knockdown of endogenous TREM2 by TREM2 siRNA aggravated neurological deficits and decreased the expression of TREM2 in naïve and ICH mice. COG1410 was associated with upregulation of TREM2, PI3K, phosphorylated-Akt, and Bcl-2 and downregulation of TNF-α, IL-1ß, and Bax after ICH. The neuroprotective effects of COG1410 were abolished by both TREM2 siRNA and PI3K inhibitor LY294002. CONCLUSIONS: Our finding demonstrated that TREM2 activation improved neurological functions and attenuated neuroinflammation and neuronal apoptosis after ICH, which was, at least in part, mediated by activation of PI3K/Akt signaling pathway. Therefore, activation of TREM2 may be a potential therapeutic strategy for the management of ICH patients.


Assuntos
Hemorragia Cerebral/patologia , Inflamação/patologia , Glicoproteínas de Membrana/metabolismo , Neurônios/patologia , Receptores Imunológicos/metabolismo , Animais , Apoptose/fisiologia , Hemorragia Cerebral/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia
8.
Exp Neurol ; 326: 113203, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31954682

RESUMO

INTRODUCTION: Disruption of the blood brain barrier (BBB) and subsequent cerebral edema formation is one of the major adverse effects of brain surgery, leading to postoperative neurological dysfunction. Recently, Mfsd2a has been shown to have a crucial role for the maintenance of BBB functions. In this study, we aimed to evaluate the role of Mfsd2a on BBB disruption following surgical brain injury (SBI) in rats. MATERIALS AND METHODS: Rats were subjected to SBI by partial resection of the right frontal lobe. To evaluate the effect of Mfsd2a on BBB permeability and neurobehavior outcome following SBI, Mfsd2a was either overexpressed or downregulated in the brain by administering Mfsd2a CRISPR activation or knockout plasmids, respectively. The potential mechanism of Mfsd2a-mediated BBB protection through the cav-1/Nrf-2/HO-1 signaling pathway was evaluated. RESULTS: Mfsd2a levels were significantly decreased while cav-1, Nrf-2 and HO-1 levels were increased in the right frontal perisurgical area following SBI. When overexpressed, Mfsd2a attenuated brain edema and abolished neurologic impairment caused by SBI while downregulation of Mfsd2a expression further deteriorated BBB functions and worsened neurologic performance following SBI. The beneficial effect of Mfsd2a overexpression on BBB functions was associated with diminished expression of cav-1, increased Keap-1/Nrf-2 dissociation and further augmented levels of Nrf-2 and HO-1 in the right frontal perisurgical area, leading to enhanced levels of tight junction proteins following SBI. The BBB protective effect of Mfsd2a was blocked by selective inhibitors of Nrf-2 and HO-1. CONCLUSIONS: Mfsd2a attenuates BBB disruption through cav-1/Nrf-2/HO-1 signaling pathway in rats subjected to experimental SBI.


Assuntos
Barreira Hematoencefálica/fisiopatologia , Lesões Encefálicas/fisiopatologia , Transdução de Sinais/genética , Animais , Comportamento Animal , Água Corporal/metabolismo , Lesões Encefálicas/genética , Lesões Encefálicas/terapia , Caveolina 1/genética , Lobo Frontal/lesões , Terapia Genética , Heme Oxigenase (Desciclizante)/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Masculino , Fator 2 Relacionado a NF-E2/genética , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
9.
J Neurosci Res ; 98(1): 29-41, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30345547

RESUMO

Major facilitator superfamily domain-containing protein-2a (Mfsd2a) which was considered as an orphan transporter has recently gained attention for its regulatory role in the maintenance of proper functioning of the blood-brain barrier. Besides the major role of Mfsd2a in maintaining the barrier function, increasing evidence has emerged with regard to the contributions of Mfsd2a to various biological processes such as transport, cell fusion, cell cycle, inflammation and regeneration, managing tumor growth, functioning of other organs with barrier functions or responses to injury. The purpose of this article is to review the different roles of Mfsd2a and its involvement in the physiological and pathophysiological processes primarily in the central nervous system and throughout the mammalian body under the lights of the current literature.


Assuntos
Barreira Hematoencefálica/fisiologia , Simportadores/fisiologia , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Barreira Hematorretiniana/fisiologia , Encéfalo/fisiologia , Feminino , Humanos , Placenta/fisiologia , Gravidez , Transdução de Sinais/fisiologia , Simportadores/metabolismo
10.
Br J Pharmacol ; 176(9): 1341-1356, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30811584

RESUMO

BACKGROUND AND PURPOSE: Inflammasome-mediated pyroptosis is an important neuronal cell death mechanism. Previous studies reported that activation of melanocortin MC4 receptor exerted neuroprotection in several neurological diseases. Here, we have investigated the role of MC4 receptor activation with RO27-3225 in suppressing neuronal pyroptosis after experimental intracerebral haemorrhage (ICH) and the underlying mechanism. EXPERIMENTAL APPROACH: One hundred and sixty-nine male CD1 mice were used. ICH was induced by injection of bacterial collagenase into the right-side basal ganglia. RO27-3225, a selective agonist of MC4 receptor, was injected intraperitoneally at 1 hr after ICH. To elucidate the underlying mechanism, we used the specific MC4 receptor antagonist HS024 and NQDI-1, a specific inhibitor of the apoptosis signalling-regulating kinase 1 (ASK1). Neurological tests, Western blot, Fluoro-Jade C, TUNEL, and immunofluorescence staining were conducted. KEY RESULTS: Expression of MC4 receptor and the NOD-like receptor family, pyrin domain containing 1 (NLRP1) inflammasome in brain were increased after ICH. RO27-3225 treatment decreased neuronal pyroptosis and neurobehavioural deficits at 24 and 72 hr after ICH. RO27-3225 reduced the expression of p-ASK1, p-JNK, p-p38 MAPK, NLRP1 inflammasome, cleaved caspase-1, and IL-1ß after ICH. HS024 pretreatment prevented the effects of RO27-3225. Similar to RO27-3225, NQDI-1 alone improved neurological functions and down-regulated ASK1/JNK/p38MAPK expression after ICH. CONCLUSIONS AND IMPLICATIONS: RO27-3225 suppressed NLRP1-dependent neuronal pyroptosis and improved neurological function, possibly mediated by activation of MC4 receptor and inhibition of ASK1/JNK/p38 MAPK signalling pathways, after experimental ICH in mice. The MC4 receptor may be a promising therapeutic target for the management of ICH.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Hemorragia Cerebral/tratamento farmacológico , Modelos Animais de Doenças , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Peptídeos/farmacologia , Receptor Tipo 4 de Melanocortina/agonistas , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Cell Transplant ; 28(6): 756-766, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30642187

RESUMO

Targeting neuronal apoptosis after intracerebral hemorrhage (ICH) may be an important therapeutic strategy for ICH patients. Emerging evidence indicates that C1q/TNF-Related Protein 9 (CTRP9), a newly discovered adiponectin receptor agonist, exerts neuroprotection in cerebrovascular disease. The aim of this study was to investigate the anti-apoptotic role of CTRP9 after experimental ICH and to explore the underlying molecular mechanisms. ICH was induced in mice via intrastriatal injection of bacterial collagenase. Recombinant CTRP9 (rCTRP9) was administrated intranasally at 1 h after ICH. To elucidate the underlying mechanisms, adiponectin receptor1 small interfering ribonucleic acid (AdipoR1 siRNA) and selective PI3 K inhibitor LY294002 were administered prior to rCTRP9 treatment. Western blots, neurofunctional assessments, immunofluorescence staining, and Fluoro-Jade C (FJC) staining experiments were performed. Administration of rCTRP9 significantly improved both short- and long-term neurofunctional behavior after ICH. RCTRP9 treatment significantly increased the expression of AdipoR1, PI3 K, p-Akt, and Bcl-2, while at the same time was found to decrease the expression of Bax in the brain, which was reversed by inhibition of AdipoR1 and PI3 K. The neuroprotective effect of rCTRP9 after ICH was mediated by attenuation of neuronal apoptosis via the AdipoR1/PI3K/Akt signaling pathway; therefore, rCTRP9 should be further evaluated as a potential therapeutic agent for ICH patients.


Assuntos
Adiponectina/uso terapêutico , Hemorragia Cerebral/tratamento farmacológico , Glicoproteínas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Hemorragia Cerebral/patologia , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Adiponectina/metabolismo , Proteínas Recombinantes/uso terapêutico
12.
J Neuroinflammation ; 15(1): 215, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30060752

RESUMO

BACKGROUND: Neuroinflammation is a crucial factor contributing to neurological injuries after intracerebral hemorrhage (ICH). C1q/TNF-related protein 9 (CTRP9), an agonist of adiponectin receptor 1 (AdipoR1), has recently been shown to reduce inflammatory responses in systemic diseases. The objective of this study was to investigate the protective role of CTRP9 against neuroinflammation after ICH in a mouse model and to explore the contribution of adenosine monophosphate-activated protein kinase (AMPK)/nuclear factor kappa B (NFκB) pathway in AdipoR1-mediated protection. METHODS: Adult male CD1 mice (n = 218) were randomly assigned to different groups for the study. ICH was induced via intrastriatal injection of bacterial collagenase. Recombinant CTRP9 (rCTRP9) was administered intranasally at 1 h after ICH. To elucidate the underlying mechanism, AdipoR1 small interfering ribonucleic acid (siRNA) and selective phosphorylated AMPK inhibitor Dorsomorphin were administered prior to rCTRP9 treatment. Brain edema, short- and long-term neurobehavior evaluation, blood glucose level, western blot, and immunofluorescence staining were performed. RESULTS: Endogenous CTRP9 and AdipoR1 expression was increased and peaked at 24 h after ICH. AdipoR1 was expressed by microglia, neurons, and astrocytes. Administration of rCTRP9 reduced brain edema, improved short- and long-term neurological function, enhanced the expression of AdipoR1 and p-AMPK, and decreased the expression of phosphorylated NFκB and inflammatory cytokines after ICH. The protective effects of rCTRP9 were abolished by administration of AdipoR1 siRNA and Dorsomorphin. CONCLUSIONS: Our findings demonstrated that administration of rCTRP9 attenuated neuroinflammation through AdipoR1/AMPK/NFκB signaling pathway after ICH in mice, thereby reducing brain edema and improving neurological function after experimental ICH in mice. Therefore, CTRP9 may provide a potential therapeutic strategy to alleviate neuroinflammation in ICH patients.


Assuntos
Adiponectina/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Hemorragia Cerebral/complicações , Encefalite/tratamento farmacológico , Encefalite/etiologia , Glicoproteínas/administração & dosagem , Receptores de Adiponectina/metabolismo , Adiponectina/metabolismo , Animais , Edema Encefálico/etiologia , Hemorragia Cerebral/mortalidade , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Glicoproteínas/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Equilíbrio Postural/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Receptores de Adiponectina/genética , Proteínas Recombinantes/administração & dosagem , Resultado do Tratamento
13.
J Neuroinflammation ; 15(1): 106, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29642894

RESUMO

BACKGROUND: Neuroinflammation plays an important role in the pathogenesis of intracerebral hemorrhage (ICH)-induced secondary brain injury. Activation of melanocortin receptor 4 (MC4R) has been shown to elicit anti-inflammatory effects in many diseases. The objective of this study was to explore the role of MC4R activation on neuroinflammation in a mouse ICH model and to investigate the contribution of adenosine monophosphate-activated protein kinase (AMPK)/c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (p38 MAPK) pathway in MC4R-mediated protection. METHODS: Adult male CD1 mice (n = 189) were subjected to intrastriatal injection of bacterial collagenase or sham surgery. The selective MC4R agonist RO27-3225 was administered by intraperitoneal injection at 1 h after collagenase injection. The specific MC4R antagonist HS024 and selective AMPK inhibitor dorsomorphin were administered prior to RO27-3225 treatment to elucidate potential mechanism. Short- and long-term neurobehavioral assessments, brain water content, immunofluorescence staining, and western blot were performed. RESULTS: The expression of MC4R and p-AMPK increased after ICH with a peak at 24 h. MC4R was expressed by microglia, neurons, and astrocytes. Activation of MC4R with RO27-3225 improved the neurobehavioral functions, decreased brain edema, and suppressed microglia/macrophage activation and neutrophil infiltration after ICH. RO27-3225 administration increased the expression of MC4R and p-AMPK while decreasing p-JNK, p-p38 MAPK, TNF-α, and IL-1ß expression, which was reversed with inhibition of MC4R and AMPK. CONCLUSIONS: Our study demonstrated that activation of MC4R with RO27-3225 attenuated neuroinflammation through AMPK-dependent inhibition of JNK and p38 MAPK signaling pathway, thereby reducing brain edema and improving neurobehavioral functions after experimental ICH in mice. Therefore, the activation of MC4R with RO27-3225 may be a potential therapeutic approach for ICH management.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Anti-Inflamatórios/uso terapêutico , Encefalite/tratamento farmacológico , Peptídeos/uso terapêutico , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Proteínas de Ligação ao Cálcio/metabolismo , Hemorragia Cerebral/complicações , Modelos Animais de Doenças , Encefalite/etiologia , Inibidores Enzimáticos/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , MAP Quinase Quinase 4/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Neurobiol Dis ; 107: 66-72, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28286182

RESUMO

INTRODUCTION: Postoperative cerebral edema is a devastating complication in neurosurgical patients. Loss of blood-brain barrier integrity has been shown to lead to the development of brain edema following neurosurgical procedures. The aim of this study was to evaluate preconditioning with Crotalus helleri venom (Cv-PC) as a potential preventive therapy for reducing postoperative brain edema in the rodent SBI model. C. helleri venom is known to contain phospholipase A2 (PLA2), an enzyme upstream to cyclooxygenase-2 (COX-2) in the inflammatory cascade, acts to increase the production of inflammatory mediators, such as prostaglandins. We hypothesize that Cv-PC will downregulate the response of the COX-2 pathway to injury, thereby reducing the inflammatory response and the development of brain edema after SBI. MATERIALS AND METHODS: 75 male Sprague Dawley rats (280-330g) were divided to the following groups-naïve+vehicle, naïve+Cv-PC, sham, vehicle, Cv-PC, Cv-PC+NS398 (COX-2 inhibitor). Vehicle preconditioned and Cv-PC animals received either three daily subcutaneous doses of saline or C. helleri venom at 72h, 48h, and 24h prior to surgery. In Cv-PC+NS398 animals, NS398 was administered intraperitoneally 1h prior to each Cv-PC injection. Sham-operated animals received craniotomy only, whereas SBI animals received a partial right frontal lobectomy. Neurological testing and brain water content were assessed at 24h and 72h after SBI; COX-2 and PGE2 expression was assessed at 24h postoperatively by Western blot and immunohistochemistry, respectively. RESULTS: At 24h after SBI, the vehicle-treated animals were observed to have increased brain water content (83.1±0.2%) compared to that of sham animals (80.2±0.1%). The brain water content of vehicle-treated animals at 72h post-SBI was elevated at 83.3±0.2%. Cv-PC-treated animals with doses of 10% LD50 had significantly reduced brain water content of 81.92±0.7% and 81.82±0.3% at 24h and 72h, respectively, after SBI compared to that of vehicle-treated animals, while Cv-PC with 5% LD50 doses showed brain water content that trended lower but did not reach statistical significance. At 24h and 72h post-SBI, Cv-PC-treated animals had significantly higher neurological score than vehicle-treated animals. The COX-2 over-expression characterized in SBI was attenuated in Cv-PC-treated animals; NS398 reversed the protective effect of Cv-PC on COX-2 expression. Cv-PC tempered the over-expression of the inflammatory marker PGE2. CONCLUSION: Our findings indicate that Cv-PC may provide a promising therapy for reducing postoperative edema and improving neurological function after neurosurgical procedures.


Assuntos
Edema Encefálico/prevenção & controle , Encéfalo/cirurgia , Lobo Frontal/lesões , Complicações Intraoperatórias/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Complicações Pós-Operatórias/tratamento farmacológico , Venenos de Serpentes/administração & dosagem , Animais , Água Corporal/efeitos dos fármacos , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Crotalus , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Dinoprostona/metabolismo , Modelos Animais de Doenças , Epiderme/efeitos dos fármacos , Epiderme/imunologia , Epiderme/patologia , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/patologia , Lobo Frontal/cirurgia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Complicações Intraoperatórias/metabolismo , Complicações Intraoperatórias/patologia , Masculino , Procedimentos Neurocirúrgicos , Nitrobenzenos/farmacologia , Complicações Pós-Operatórias/metabolismo , Complicações Pós-Operatórias/patologia , Ratos Sprague-Dawley , Sulfonamidas/farmacologia
15.
Sci Rep ; 7: 40821, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102287

RESUMO

Perioperative bleeding is a potentially devastating complication in neurosurgical patients, and plasma fibrinogen concentration has been identified as a potential modifiable risk factor for perioperative bleeding. The aim of this study was to evaluate preconditioning with Crotalus atrox venom (Cv-PC) as potential preventive therapy for reducing perioperative hemorrhage in the rodent model of surgical brain injury (SBI). C. atrox venom contains snake venom metalloproteinases that cleave fibrinogen into fibrin split products without inducing clotting. Separately, fibrinogen split products induce fibrinogen production, thereby elevating plasma fibrinogen levels. Thus, the hypothesis was that preconditioning with C. atrox venom will produce fibrinogen spilt products, thereby upregulating fibrinogen levels, ultimately improving perioperative hemostasis during SBI. We observed that Cv-PC SBI animals had significantly reduced intraoperative hemorrhage and postoperative hematoma volumes compared to those of vehicle preconditioned SBI animals. Cv-PC animals were also found to have higher levels of plasma fibrinogen at the time of surgery, with unchanged prothrombin time. Cv-PC studies with fractions of C. atrox venom suggest that snake venom metalloproteinases are largely responsible for the improved hemostasis by Cv-PC. Our findings indicate that Cv-PC increases plasma fibrinogen levels and may provide a promising therapy for reducing perioperative hemorrhage in elective surgeries.


Assuntos
Lesões Encefálicas/patologia , Fibrinogênio/análise , Hemorragia/prevenção & controle , Venenos de Serpentes/uso terapêutico , Animais , Lesões Encefálicas/metabolismo , Crotalus/metabolismo , Modelos Animais de Doenças , Fibrina/metabolismo , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Hematoma/prevenção & controle , Coeficiente Internacional Normatizado , Complicações Intraoperatórias , Masculino , Tempo de Protrombina , Ratos , Ratos Sprague-Dawley
16.
Acta Neurochir Suppl ; 121: 135-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26463937

RESUMO

We evaluated whether JWH133, a selective cannabinoid type 2 receptor (CB2R) agonist, prevented neurogenic pulmonary edema (NPE) after subarachnoid hemorrhage (SAH) by attenuating inflammation. Adult male rats were assigned to six groups: sham-operated, SAH with vehicle, SAH with JWH133 (0.3, 1.0, or 3.0 mg/kg) treatment 1 h after surgery, and SAH with JWH133 (1.0 mg/kg) at 1 h with a selective CB2R antagonist, SR144528 (3.0 mg/kg). The perforation model of SAH was performed and pulmonary wet-to-dry weight ratio was evaluated 24 and 72 h after surgery. Western blot analyses and immunohistochemistry were evaluated 24 h after surgery. JWH133 (1.0 mg/kg) significantly and most strongly improved lung edema 24 h after SAH. SR144528 administration significantly reversed the effects of JWH133 (1.0 mg/kg). SAH-induced increasing levels of myeloperoxidase (MPO) and decreasing levels of a tight junction (TJ) protein, junctional adhesion molecule (JAM)-A, were ameliorated by JWH133 (1.0 mg/kg) administration 24 h after SAH. Immunohistochemical assessment also confirmed substantial leukocyte infiltration in the outside of vessels in SAH, which were attenuated by JWH133 (1.0 mg/kg) injection. CB2R agonist ameliorated lung permeability by inhibiting leukocyte trafficking and protecting tight junction proteins in the lung of NPE after SAH.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Movimento Celular/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Edema Pulmonar/patologia , Receptor CB2 de Canabinoide/agonistas , Hemorragia Subaracnóidea/fisiopatologia , Animais , Western Blotting , Canfanos/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Modelos Animais de Doenças , Imuno-Histoquímica , Moléculas de Adesão Juncional/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Tamanho do Órgão , Peroxidase/metabolismo , Edema Pulmonar/etiologia , Edema Pulmonar/metabolismo , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor CB2 de Canabinoide/antagonistas & inibidores , Hemorragia Subaracnóidea/complicações
17.
Acta Neurochir Suppl ; 121: 145-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26463939

RESUMO

Whether hypotension that occurs due to neurogenic stunned myocardium after subarachnoid hemorrhage (SAH) is associated with cardiomyocyte apoptotic cell death remains unknown. In this study, 18 male rats were subjected to sham or the endovascular perforation model of SAH surgery. Based on the mean arterial pressure (MAP) after SAH, rats were separated into SAH with hypotension (SAH hypotension) or SAH with blood pressure preservation (SAH BP preservation) groups. All animals were euthanized 2 h after the surgical procedure. Hearts were removed and separated transversely into base and apex parts, then Western blot analyses and immunohistochemistry were performed only in the apex part. One rat died as a result of severe SAH and two rats with mild SAH were excluded. We analyzed data from 15 rats that were divided into three groups: sham, SAH hypotension, and SAH BP preservation (n = 5, each). There was a significantly higher cleaved caspase-3/caspase-3 ratio in the SAH hypotension group compared with sham and the SAH BP preservation group. Cardiomyocyte apoptosis was demonstrated in the SAH rats. This is the first experimental report that describes SAH-induced neurogenic stunned myocardium with ensuing hypotension may result from the acute apoptotic cardiomyocyte cell death in the left ventricle.


Assuntos
Apoptose , Ventrículos do Coração/patologia , Hipotensão/etiologia , Miocárdio Atordoado/etiologia , Miócitos Cardíacos/patologia , Hemorragia Subaracnóidea/complicações , Animais , Western Blotting , Caspase 3/metabolismo , Modelos Animais de Doenças , Procedimentos Endovasculares , Imunofluorescência , Ventrículos do Coração/citologia , Marcação In Situ das Extremidades Cortadas , Masculino , Miocárdio Atordoado/patologia , Punções , Ratos , Ratos Sprague-Dawley
18.
Behav Brain Res ; 290: 161-71, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25975171

RESUMO

Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 h after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in significantly elevated frontal lobe brain water content 24 and 72 h after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study's results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 h post-SBI.


Assuntos
Comportamento Animal/fisiologia , Água Corporal , Edema Encefálico/fisiopatologia , Lesões Encefálicas/complicações , Lobo Frontal/química , Desempenho Psicomotor/fisiologia , Animais , Edema Encefálico/etiologia , Lesões Encefálicas/etiologia , Modelos Animais de Doenças , Masculino , Testes Neuropsicológicos , Procedimentos Neurocirúrgicos , Ratos , Ratos Sprague-Dawley
19.
Exp Neurol ; 261: 396-403, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25058046

RESUMO

Early brain injury (EBI) which comprises of vasogenic edema and apoptotic cell death is an important component of subarachnoid hemorrhage (SAH) pathophysiology. This study evaluated whether cannabinoid receptor type 2 (CB2R) agonist, JWH133, attenuates EBI after SAH and whether CB2R stimulation reduces pro-apoptotic caspase-3 via up-regulation of cAMP response element-binding protein (CREB)-Bcl-2 signaling pathway. Male Sprague-Dawley rats (n=123) were subjected to SAH by endovascular perforation. Rats received vehicle or JWH133 at 1h after SAH. Neurological deficits and brain water content were evaluated at 24h after SAH. Western blot was performed to quantify phosphorylated CREB (pCREB), Bcl-2, and cleaved caspase-3 levels. Neuronal cell death was evaluated with terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling staining. Additionally, CREB siRNA was administered to manipulate the proposed pathway. JWH133 (1.0mg/kg) improved neurological deficits and reduced brain water content in left hemisphere 24h after SAH. JWH133 significantly increased activated CREB (pCREB) and Bcl-2 levels and significantly decreased cleaved caspase-3 levels in left hemisphere 24h after SAH. CREB siRNA reversed the effects of treatment. TUNEL positive neurons in the cortex were reduced with JWH133 treatment. Thus, CB2R stimulation attenuated EBI after SAH possibly through activation of pCREB-Bcl-2 pathway.


Assuntos
Apoptose/efeitos dos fármacos , Proteína de Ligação a CREB/metabolismo , Canabinoides/uso terapêutico , Receptor CB2 de Canabinoide/agonistas , Transdução de Sinais/efeitos dos fármacos , Hemorragia Subaracnóidea/tratamento farmacológico , Animais , Lesões Encefálicas/etiologia , Lesões Encefálicas/prevenção & controle , Canabinoides/farmacologia , Caspase 3/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Masculino , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/metabolismo , Fatores de Tempo
20.
J Neurol Sci ; 342(1-2): 101-6, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24819918

RESUMO

Early brain injury (EBI), following subarachnoid hemorrhage (SAH), comprises blood-brain barrier (BBB) disruption and consequent edema formation. Peripheral leukocytes can infiltrate the injured brain, thereby aggravating BBB leakage and neuroinflammation. Thus, anti-inflammatory pharmacotherapies may ameliorate EBI and provide neuroprotection after SAH. Cannabinoid type 2 receptor (CB2R) agonism has been shown to reduce neuroinflammation; however, the precise protective mechanisms remain to be elucidated. This study aimed to evaluate whether the selective CB2R agonist, JWH133 can ameliorate EBI by reducing brain-infiltrated leukocytes after SAH. Adult male Sprague-Dawley rats were randomly assigned to the following groups: sham-operated, SAH with vehicle, SAH with JWH133 (1.0mg/kg), or SAH with a co-administration of JWH133 and selective CB2R antagonist SR144528 (3.0mg/kg). SAH was induced by endovascular perforation, and JWH133 was administered 1h after surgery. Neurological deficits, brain water content, Evans blue dye extravasation, and Western blot assays were evaluated at 24h after surgery. JWH133 improved neurological scores and reduced brain water content; however, SR144528 reversed these treatment effects. JWH133 reduced Evans blue dye extravasation after SAH. Furthermore, JWH133 treatment significantly increased TGF-ß1 expression and prevented an SAH-induced increase in E-selectin and myeloperoxidase. Lastly, SAH resulted in a decreased expression of the tight junction protein zonula occludens-1 (ZO-1); however, JWH133 treatment increased the ZO-1 expression. We suggest that CB2R stimulation attenuates neurological outcome and brain edema, by suppressing leukocyte infiltration into the brain through TGF-ß1 up-regulation and E-selectin reduction, resulting in protection of the BBB after SAH.


Assuntos
Edema Encefálico/complicações , Edema Encefálico/tratamento farmacológico , Quimiotaxia de Leucócito/efeitos dos fármacos , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/fisiologia , Hemorragia Subaracnóidea/complicações , Fator de Crescimento Transformador beta1/biossíntese , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Edema Encefálico/fisiopatologia , Canfanos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/uso terapêutico , Antagonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Selectina E/biossíntese , Selectina E/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Masculino , Peroxidase/biossíntese , Peroxidase/efeitos dos fármacos , Pirazóis/farmacologia , Ratos , Receptor CB2 de Canabinoide/antagonistas & inibidores , Hemorragia Subaracnóidea/tratamento farmacológico , Fator de Crescimento Transformador beta1/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/biossíntese , Proteína da Zônula de Oclusão-1/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA