Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(42): 20930-20937, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31575742

RESUMO

In macrolecithal species, cryopreservation of the oocyte and zygote is not possible due to the large size and quantity of lipid deposited within the egg. For birds, this signifies that cryopreserving and regenerating a species from frozen cellular material are currently technically unfeasible. Diploid primordial germ cells (PGCs) are a potential means to freeze down the entire genome and reconstitute an avian species from frozen material. Here, we examine the use of genetically engineered (GE) sterile female layer chicken as surrogate hosts for the transplantation of cryopreserved avian PGCs from rare heritage breeds of chicken. We first amplified PGC numbers in culture before cryopreservation and subsequent transplantation into host GE embryos. We found that all hatched offspring from the chimera GE hens were derived from the donor rare heritage breed broiler PGCs, and using cryopreserved semen, we were able to produce pure offspring. Measurement of the mutation rate of PGCs in culture revealed that 2.7 × 10-10 de novo single-nucleotide variants (SNVs) were generated per cell division, which is comparable with other stem cell lineages. We also found that endogenous avian leukosis virus (ALV) retroviral insertions were not mobilized during in vitro propagation. Taken together, these results show that mutation rates are no higher than normal stem cells, essential if we are to conserve avian breeds. Thus, GE sterile avian surrogate hosts provide a viable platform to conserve and regenerate avian species using cryopreserved PGCs.


Assuntos
Animais Geneticamente Modificados/genética , Cruzamento/métodos , Galinhas/genética , Células Germinativas/citologia , Infertilidade/veterinária , Animais , Animais Geneticamente Modificados/fisiologia , Galinhas/fisiologia , Criopreservação , Diploide , Transferência Embrionária , Feminino , Edição de Genes , Engenharia Genética , Masculino
2.
BMC Biol ; 13: 12, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25857347

RESUMO

BACKGROUND: Macrophages have many functions in development and homeostasis as well as innate immunity. Recent studies in mammals suggest that cells arising in the yolk sac give rise to self-renewing macrophage populations that persist in adult tissues. Macrophage proliferation and differentiation is controlled by macrophage colony-stimulating factor (CSF1) and interleukin 34 (IL34), both agonists of the CSF1 receptor (CSF1R). In the current manuscript we describe the origin, function and regulation of macrophages, and the role of CSF1R signaling during embryonic development, using the chick as a model. RESULTS: Based upon RNA-sequencing comparison to bone marrow-derived macrophages grown in CSF1, we show that embryonic macrophages contribute around 2% of the total embryo RNA in day 7 chick embryos, and have similar gene expression profiles to bone marrow-derived macrophages. To explore the origins of embryonic and adult macrophages, we injected Hamburger-Hamilton stage 16 to 17 chick embryos with either yolk sac-derived blood cells, or bone marrow cells from EGFP+ donors. In both cases, the transferred cells gave rise to large numbers of EGFP+ tissue macrophages in the embryo. In the case of the yolk sac, these cells were not retained in hatched birds. Conversely, bone marrow EGFP+ cells gave rise to tissue macrophages in all organs of adult birds, and regenerated CSF1-responsive marrow macrophage progenitors. Surprisingly, they did not contribute to any other hematopoietic lineage. To explore the role of CSF1 further, we injected embryonic or hatchling CSF1R-reporter transgenic birds with a novel chicken CSF1-Fc conjugate. In both cases, the treatment produced a large increase in macrophage numbers in all tissues examined. There were no apparent adverse effects of chicken CSF1-Fc on embryonic or post-hatch development, but there was an unexpected increase in bone density in the treated hatchlings. CONCLUSIONS: The data indicate that the yolk sac is not the major source of macrophages in adult birds, and that there is a macrophage-restricted, self-renewing progenitor cell in bone marrow. CSF1R is demonstrated to be limiting for macrophage development during development in ovo and post-hatch. The chicken provides a novel and tractable model to study the development of the mononuclear phagocyte system and CSF1R signaling.


Assuntos
Galinhas/imunologia , Sistema Fagocitário Mononuclear/embriologia , Sistema Fagocitário Mononuclear/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Transdução de Sinais , Animais , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/metabolismo , Densidade Óssea/efeitos dos fármacos , Células da Medula Óssea , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Embrião de Galinha , Galinhas/genética , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Sistema Fagocitário Mononuclear/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Saco Vitelino/citologia
3.
Development ; 141(16): 3255-65, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25063453

RESUMO

We have generated the first transgenic chickens in which reporter genes are expressed in a specific immune cell lineage, based upon control elements of the colony stimulating factor 1 receptor (CSF1R) locus. The Fms intronic regulatory element (FIRE) within CSF1R is shown to be highly conserved in amniotes and absolutely required for myeloid-restricted expression of fluorescent reporter genes. As in mammals, CSF1R-reporter genes were specifically expressed at high levels in cells of the macrophage lineage and at a much lower level in granulocytes. The cell lineage specificity of reporter gene expression was confirmed by demonstration of coincident expression with the endogenous CSF1R protein. In transgenic birds, expression of the reporter gene provided a defined marker for macrophage-lineage cells, identifying the earliest stages in the yolk sac, throughout embryonic development and in all adult tissues. The reporter genes permit detailed and dynamic visualisation of embryonic chicken macrophages. Chicken embryonic macrophages are not recruited to incisional wounds, but are able to recognise and phagocytose microbial antigens.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Macrófagos/citologia , Animais , Animais Geneticamente Modificados , Sequência de Bases , Aves , Linhagem da Célula , Galinhas , Células Dendríticas/citologia , Genes Reporter , Técnicas Genéticas , Sistema Imunitário , Íntrons , Dados de Sequência Molecular , Fagocitose , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Transgenes , Saco Vitelino/fisiologia
4.
PLoS One ; 8(11): e77222, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223709

RESUMO

In this work, we describe a single piggyBac transposon system containing both a tet-activator and a doxycycline-inducible expression cassette. We demonstrate that a gene product can be conditionally expressed from the integrated transposon and a second gene can be simultaneously targeted by a short hairpin RNA contained within the transposon, both in vivo and in mammalian and avian cell lines. We applied this system to stably modify chicken primordial germ cell (PGC) lines in vitro and induce a reporter gene at specific developmental stages after injection of the transposon-modified germ cells into chicken embryos. We used this vector to express a constitutively-active AKT molecule during PGC migration to the forming gonad. We found that PGC migration was retarded and cells could not colonise the forming gonad. Correct levels of AKT activation are thus essential for germ cell migration during early embryonic development.


Assuntos
Movimento Celular , Elementos de DNA Transponíveis , Células Germinativas/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ativação Transcricional , Células-Tronco Adultas/metabolismo , Animais , Linhagem Celular , Embrião de Galinha , Galinhas , Clonagem Molecular , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Expressão Gênica , Engenharia Genética , Células Germinativas/transplante , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Camundongos Transgênicos , Sêmen/citologia , Transdução de Sinais
5.
Development ; 135(13): 2289-99, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18508860

RESUMO

The outgrowth of the vertebrate tail is thought to involve the proliferation of regionalised stem/progenitor cell populations formed during gastrulation. To follow these populations over extended periods, we used cells from GFP-positive transgenic chick embryos as a source for donor tissue in grafting experiments. We determined that resident progenitor cell populations are localised in the chicken tail bud. One population, which is located in the chordoneural hinge (CNH), contributes descendants to the paraxial mesoderm, notochord and neural tube, and is serially transplantable between embryos. A second population of mesodermal progenitor cells is located in a separate dorsoposterior region of the tail bud, and a corresponding population is present in the mouse tail bud. Using heterotopic transplantations, we show that the fate of CNH cells depends on their environment within the tail bud. Furthermore, we show that the anteroposterior identity of tail bud progenitor cells can be reset by heterochronic transplantation to the node region of gastrula-stage chicken embryos.


Assuntos
Neurônios/metabolismo , Células-Tronco/metabolismo , Cauda/embriologia , Cauda/metabolismo , Animais , Animais Geneticamente Modificados , Contagem de Células , Diferenciação Celular , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Neurônios/citologia , Transplante de Células-Tronco , Células-Tronco/citologia , Cauda/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA