Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 14(2): e0059823, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37017524

RESUMO

Caseous necrosis is a hallmark of tuberculosis (TB) pathology and creates a niche for drug-tolerant persisters within the host. Cavitary TB and high bacterial burden in caseum require longer treatment duration. An in vitro model that recapitulates the major features of Mycobacterium tuberculosis (Mtb) in caseum would accelerate the identification of compounds with treatment-shortening potential. We have developed a caseum surrogate model consisting of lysed and denatured foamy macrophages. Upon inoculation of Mtb from replicating cultures, the pathogen adapts to the lipid-rich matrix and gradually adopts a nonreplicating state. We determined that the lipid composition of ex vivo caseum and the surrogate matrix are similar. We also observed that Mtb in caseum surrogate accumulates intracellular lipophilic inclusions (ILI), a distinctive characteristic of quiescent and drug-tolerant Mtb. Expression profiling of a representative gene subset revealed common signatures between the models. Comparison of Mtb drug susceptibility in caseum and caseum surrogate revealed that both populations are similarly tolerant to a panel of TB drugs. By screening drug candidates in the surrogate model, we determined that the bedaquiline analogs TBAJ876 and TBAJ587, currently in clinical development, exhibit superior bactericidal against caseum-resident Mtb, both alone and as substitutions for bedaquiline in the bedaquiline-pretomanid-linezolid regimen approved for the treatment of multidrug-resistant TB. In summary, we have developed a physiologically relevant nonreplicating persistence model that reflects the distinct metabolic and drug-tolerant state of Mtb in caseum. IMPORTANCE M. tuberculosis (Mtb) within the caseous core of necrotic granulomas and cavities is extremely drug tolerant and presents a significant hurdle to treatment success and relapse prevention. Many in vitro models of nonreplicating persistence have been developed to characterize the physiologic and metabolic adaptations of Mtb and identify compounds active against this treatment-recalcitrant population. However, there is little consensus on their relevance to in vivo infection. Using lipid-laden macrophage lysates, we have designed and validated a surrogate matrix that closely mimics caseum and in which Mtb develops a phenotype similar to that of nonreplicating bacilli in vivo. The assay is well suited to screen for bactericidal compounds against caseum-resident Mtb in a medium-throughput format, allowing for reduced reliance on resource intensive animal models that present large necrotic lesions and cavities. Importantly, this approach will aid the identification of vulnerable targets in caseum Mtb and can accelerate the development of novel TB drugs with treatment-shortening potential.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Lipídeos
2.
Proc Natl Acad Sci U S A ; 120(7): e2215512120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36763530

RESUMO

Tuberculosis treatment requires months-long combination chemotherapy with multiple drugs, with shorter treatments leading to relapses. A major impediment to shortening treatment is that Mycobacterium tuberculosis becomes tolerant to the administered drugs, starting early after infection and within days of infecting macrophages. Multiple lines of evidence suggest that macrophage-induced drug tolerance is mediated by mycobacterial drug efflux pumps. Here, using assays to directly measure drug efflux, we find that M. tuberculosis transports the first-line antitubercular drug rifampicin through a proton gradient-dependent mechanism. We show that verapamil, a known efflux pump inhibitor, which inhibits macrophage-induced rifampicin tolerance, also inhibits M.tuberculosis rifampicin efflux. As with macrophage-induced tolerance, the calcium channel-inhibiting property of verapamil is not required for its inhibition of rifampicin efflux. By testing verapamil analogs, we show that verapamil directly inhibits M. tuberculosis drug efflux pumps through its human P-glycoprotein (PGP)-like inhibitory activity. Screening commonly used drugs with incidental PGP inhibitory activity, we find many inhibit rifampicin efflux, including the proton pump inhibitors (PPIs) such as omeprazole. Like verapamil, the PPIs inhibit macrophage-induced rifampicin tolerance as well as intramacrophage growth, which has also been linked to mycobacterial efflux pump activity. Our assays provide a facile screening platform for M. tuberculosis efflux pump inhibitors that inhibit in vivo drug tolerance and growth.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Rifampina/farmacologia , Inibidores da Bomba de Prótons/farmacologia , Antituberculosos/farmacologia , Verapamil/farmacologia , Macrófagos , Tuberculose/tratamento farmacológico , Tolerância a Medicamentos , Proteínas de Bactérias , Testes de Sensibilidade Microbiana
3.
Nat Commun ; 13(1): 884, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173157

RESUMO

Mechanisms underlying variability in transmission of Mycobacterium tuberculosis strains remain undefined. By characterizing high and low transmission strains of M.tuberculosis in mice, we show here that high transmission M.tuberculosis strain induce rapid IL-1R-dependent alveolar macrophage migration from the alveolar space into the interstitium and that this action is key to subsequent temporal events of early dissemination of bacteria to the lymph nodes, Th1 priming, granulomatous response and bacterial control. In contrast, IL-1R-dependent alveolar macrophage migration and early dissemination of bacteria to lymph nodes is significantly impeded in infection with low transmission M.tuberculosis strain; these events promote the development of Th17 immunity, fostering neutrophilic inflammation and increased bacterial replication. Our results suggest that by inducing granulomas with the potential to develop into cavitary lesions that aids bacterial escape into the airways, high transmission M.tuberculosis strain is poised for greater transmissibility. These findings implicate bacterial heterogeneity as an important modifier of TB disease manifestations and transmission.


Assuntos
Macrófagos Alveolares/imunologia , Mycobacterium tuberculosis/imunologia , Receptores Tipo I de Interleucina-1/metabolismo , Células Th17/imunologia , Tuberculose Pulmonar/transmissão , Animais , Movimento Celular/imunologia , Células Dendríticas/imunologia , Feminino , Linfonodos/imunologia , Linfonodos/microbiologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C3H , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/microbiologia , Transdução de Sinais/imunologia , Células Th1/imunologia , Tuberculose Pulmonar/imunologia
4.
Cell Host Microbe ; 29(1): 68-82.e5, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33142108

RESUMO

Tuberculosis (TB) is a heterogeneous disease manifesting in a subset of individuals infected with aerosolized Mycobacterium tuberculosis (Mtb). Unlike human TB, murine infection results in uniformly high lung bacterial burdens and poorly organized granulomas. To develop a TB model that more closely resembles human disease, we infected mice with an ultra-low dose (ULD) of between 1-3 founding bacteria, reflecting a physiologic inoculum. ULD-infected mice exhibited highly heterogeneous bacterial burdens, well-circumscribed granulomas that shared features with human granulomas, and prolonged Mtb containment with unilateral pulmonary infection in some mice. We identified blood RNA signatures in mice infected with an ULD or a conventional Mtb dose (50-100 CFU) that correlated with lung bacterial burdens and predicted Mtb infection outcomes across species, including risk of progression to active TB in humans. Overall, these findings highlight the potential of the murine TB model and show that ULD infection recapitulates key features of human TB.


Assuntos
Modelos Animais de Doenças , Mycobacterium tuberculosis/patogenicidade , Tuberculose Pulmonar , Animais , Carga Bacteriana , Biomarcadores/sangue , Progressão da Doença , Feminino , Granuloma/patologia , Humanos , Pulmão/microbiologia , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/crescimento & desenvolvimento , RNA-Seq , Tuberculose Pulmonar/sangue , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
5.
J Infect Dis ; 221(6): 989-999, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31665359

RESUMO

Novel antimicrobials for treatment of Mycobacterium tuberculosis are needed. We hypothesized that nicotinamide (NAM) and nicotinic acid (NA) modulate macrophage function to restrict M. tuberculosis replication in addition to their direct antimicrobial properties. Both compounds had modest activity in 7H9 broth, but only NAM inhibited replication in macrophages. Surprisingly, in macrophages NAM and the related compound pyrazinamide restricted growth of bacille Calmette-Guérin but not wild-type Mycobacterium bovis, which both lack a functional nicotinamidase/pyrazinamidase (PncA) rendering each strain resistant to these drugs in broth culture. Interestingly, NAM was not active in macrophages infected with a virulent M. tuberculosis mutant encoding a deletion in pncA. We conclude that the differential activity of NAM and nicotinic acid on infected macrophages suggests host-specific NAM targets rather than PncA-dependent direct antimicrobial properties. These activities are sufficient to restrict attenuated BCG, but not virulent wild-type M. bovis or M. tuberculosis.


Assuntos
Macrófagos/microbiologia , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Niacinamida/farmacologia , Complexo Vitamínico B/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Citocinas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Niacina/farmacologia , Niacinamida/administração & dosagem , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Células U937
6.
J Infect Dis ; 219(10): 1554-1558, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30753612

RESUMO

The Mycobacterium tuberculosis lineage 4 strains CDC1551 and H37Rv develop tolerance to multiple antibiotics upon macrophage residence. To determine whether macrophage-induced tolerance is a general feature of clinical M. tuberculosis isolates, we assessed macrophage-induced drug tolerance in strains from lineages 1-3, representing the other predominant M. tuberculosis strains responsible for tuberculosis globally. All 3 lineages developed isoniazid tolerance. While lineage 1, 3, and 4 strains developed rifampin tolerance, lineage 2 Beijing strains did not. Their failure to develop tolerance may be explained by their harboring of a loss-of-function mutation in the Rv1258c efflux pump that is linked to macrophage-induced rifampicin tolerance.


Assuntos
Macrófagos/fisiologia , Mycobacterium tuberculosis/genética , Rifampina/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Isoniazida/farmacologia , Mutação com Perda de Função , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/isolamento & purificação , Células THP-1 , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
7.
Mol Cell ; 73(1): 157-165.e5, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30449724

RESUMO

Efforts to battle antimicrobial resistance (AMR) are generally focused on developing novel antibiotics. However, history shows that resistance arises regardless of the nature or potency of new drugs. Here, we propose and provide evidence for an alternate strategy to resolve this problem: inhibiting evolution. We determined that the DNA translocase Mfd is an "evolvability factor" that promotes mutagenesis and is required for rapid resistance development to all antibiotics tested across highly divergent bacterial species. Importantly, hypermutator alleles that accelerate AMR development did not arise without Mfd, at least during evolution of trimethoprim resistance. We also show that Mfd's role in AMR development depends on its interactions with the RNA polymerase subunit RpoB and the nucleotide excision repair protein UvrA. Our findings suggest that AMR development can be inhibited through inactivation of evolvability factors (potentially with "anti-evolution" drugs)-in particular, Mfd-providing an unexplored route toward battling the AMR crisis.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Evolução Molecular , Fatores de Transcrição/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Células CACO-2 , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Desenho de Fármacos , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular , Mutagênese/efeitos dos fármacos , Ligação Proteica , Especificidade da Espécie , Fatores de Tempo , Fatores de Transcrição/metabolismo
8.
Cell Host Microbe ; 24(3): 439-446.e4, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30146391

RESUMO

Mycobacterium tuberculosis (Mtb) infection is initiated in the distal airways, but the bacteria ultimately disseminate to the lung interstitium. Although various cell types, including alveolar macrophages (AM), neutrophils, and permissive monocytes, are known to be infected with Mtb, the initially infected cells as well as those that mediate dissemination from the alveoli to the lung interstitium are unknown. In this study, using a murine infection model, we reveal that early, productive Mtb infection occurs almost exclusively within airway-resident AM. Thereafter Mtb-infected, but not uninfected, AM localize to the lung interstitium through mechanisms requiring an intact Mtb ESX-1 secretion system. Relocalization of infected AM precedes Mtb uptake by recruited monocyte-derived macrophages and neutrophils. This dissemination process is driven by non-hematopoietic host MyD88/interleukin-1 receptor inflammasome signaling. Thus, interleukin-1-mediated crosstalk between Mtb-infected AM and non-hematopoietic cells promotes pulmonary Mtb infection by enabling infected cells to disseminate from the alveoli to the lung interstitium.


Assuntos
Macrófagos Alveolares/imunologia , Mycobacterium tuberculosis/imunologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/microbiologia , Tuberculose/imunologia , Tuberculose/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Granuloma/microbiologia , Granuloma/patologia , Imunidade Inata/imunologia , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores de Interleucina-1/metabolismo
9.
PLoS Genet ; 13(12): e1007131, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29281637

RESUMO

The cell envelope of mycobacteria is a highly unique and complex structure that is functionally equivalent to that of Gram-negative bacteria to protect the bacterial cell. Defects in the integrity or assembly of this cell envelope must be sensed to allow the induction of stress response systems. The promoter that is specifically and most strongly induced upon exposure to ethambutol and isoniazid, first line drugs that affect cell envelope biogenesis, is the iniBAC promoter. In this study, we set out to identify the regulator of the iniBAC operon in Mycobacterium marinum using an unbiased transposon mutagenesis screen in a constitutively iniBAC-expressing mutant background. We obtained multiple mutants in the mce1 locus as well as mutants in an uncharacterized putative transcriptional regulator (MMAR_0612). This latter gene was shown to function as the iniBAC regulator, as overexpression resulted in constitutive iniBAC induction, whereas a knockout mutant was unable to respond to the presence of ethambutol and isoniazid. Experiments with the M. tuberculosis homologue (Rv0339c) showed identical results. RNAseq experiments showed that this regulatory gene was exclusively involved in the regulation of the iniBAC operon. We therefore propose to name this dedicated regulator iniBAC Regulator (IniR). IniR belongs to the family of signal transduction ATPases with numerous domains, including a putative sugar-binding domain. Upon testing different sugars, we identified trehalose as an activator and metabolic cue for iniBAC activation, which could also explain the effect of the mce1 mutations. In conclusion, cell envelope stress in mycobacteria is regulated by IniR in a cascade that includes trehalose.


Assuntos
Adenosina Trifosfatases/genética , Mycobacterium marinum/genética , Mycobacterium marinum/metabolismo , Trealose/metabolismo , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Elementos de DNA Transponíveis , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Mutagênese Insercional , Óperon , Regiões Promotoras Genéticas , Transdução de Sinais , Transcrição Gênica
10.
Sci Rep ; 7: 46666, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28436493

RESUMO

Although Mycobacterium tuberculosis (M.tb) DK9897 is an attenuated strain, it was isolated from a patient with extrapulmonary tuberculosis and vaccination with a subunit vaccine (H56) induced poor protection against it. Both attenuation and lack of protection are because M.tb DK9897 cannot secrete the EsxA virulence factor nor induce a host response against it. Genome sequencing identified a frameshift mutation in the eccCa1 gene. Since the encoded EccCa1 protein provides energy for ESX-1 secretion, it suggested a defect in the ESX-1 type VII secretion system. Genetic complementation with a plasmid carrying the M.tb H37Rv sequence of eccCa1-eccCb1-pe35 re-established EsxA secretion, host specific EsxA T-cell responses, and increased strain virulence. The ESX-1 secretion defect prevents several virulence factors from being functional during infection and therefore attenuates M.tb. It precludes specific T-cell responses against strong antigens and we found very little in vivo cytokine production, gross pathology or granuloma formation in lungs from M.tb DK9897 infected animals. This coincides with M.tb DK9897 being unable to disrupt the phagosome membrane and make contact to the cytosol.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Fatores de Virulência/imunologia , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Mutação , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Filogenia , Especificidade da Espécie , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/microbiologia , Células THP-1 , Tuberculose/microbiologia , Vacinação/métodos , Virulência/genética , Fatores de Virulência/genética
11.
Am J Respir Cell Mol Biol ; 52(6): 708-16, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25322074

RESUMO

Mycobacterium tuberculosis (Mtb) must counter hypoxia within granulomas to persist. DosR, in concert with sensor kinases DosS and DosT, regulates the response to hypoxia. Yet Mtb lacking functional DosR colonize the lungs of C57Bl/6 mice, presumably owing to the lack of organized lesions with sufficient hypoxia in that model. We compared the phenotype of the Δ-dosR, Δ-dosS, and Δ-dosT mutants to Mtb using C3HeB/FeJ mice, an alternate mouse model where lesions develop hypoxia. C3HeB/FeJ mice were infected via aerosol. The progression of infection was analyzed by tissue bacterial burden and histopathology. A measure of the comparative global immune responses was also analyzed. Although Δ-dosR and Δ-dosT grew comparably to wild-type Mtb, Δ-dosS exhibited a significant defect in bacterial burden and pathology in vivo, accompanied by ablated proinflammatory response. Δ-dosS retained the ability to induce DosR. The Δ-dosS mutant was also attenuated in murine macrophages ex vivo, with evidence of reduced expression of the proinflammatory signature. Our results show that DosS, but not DosR and DosT, is required by Mtb to survive in C3HeB/FeJ mice. The attenuation of Δ-dosS is not due to its inability to induce the DosR regulon, nor is it a result of the accumulation of hypoxia. That the in vivo growth restriction of Δ-dosS could be mimicked ex vivo suggested sensitivity to macrophage oxidative burst. Anoxic caseous centers within tuberculosis lesions eventually progress to cavities. Our results provide greater insight into the molecular mechanisms of Mtb persistence within host lungs.


Assuntos
Proteínas de Bactérias/genética , Granuloma do Sistema Respiratório/microbiologia , Mycobacterium tuberculosis/patogenicidade , Protamina Quinase/genética , Tuberculose Pulmonar/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Hipóxia Celular , Células Cultivadas , Regulação Bacteriana da Expressão Gênica , Macrófagos/microbiologia , Masculino , Camundongos Endogâmicos C3H , Viabilidade Microbiana , Mycobacterium tuberculosis/genética , Protamina Quinase/metabolismo , Regulon , Virulência
12.
Chem Biol ; 21(7): 819-30, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24954008

RESUMO

In this study, we identified antifolates with potent, targeted activity against whole-cell Mycobacterium tuberculosis (MTB). Liquid chromatography-mass spectrometry analysis of antifolate-treated cultures revealed metabolic disruption, including decreased pools of methionine and S-adenosylmethionine. Transcriptomic analysis highlighted altered regulation of genes involved in the biosynthesis and utilization of these two compounds. Supplementation with amino acids or S-adenosylmethionine was sufficient to rescue cultures from antifolate treatment. Instead of the "thymineless death" that characterizes folate pathway inhibition in a wide variety of organisms, these data suggest that MTB is vulnerable to a critical disruption of the reactions centered around S-adenosylmethionione, the activated methyl cycle.


Assuntos
Antituberculosos/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Metionina/análogos & derivados , Metionina/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Di-Hidropteroato Sintase/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , S-Adenosilmetionina/metabolismo , Especificidade da Espécie , Tetra-Hidrofolato Desidrogenase/metabolismo , Triazinas/farmacologia
13.
PLoS Biol ; 12(1): e1001746, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24409094

RESUMO

The majority of Mycobacterium tuberculosis (Mtb) infections are clinically latent, characterized by drug tolerance and little or no bacterial replication. Low oxygen tension is a major host factor inducing bacteriostasis, but the molecular mechanisms driving oxygen-dependent replication are poorly understood. Here, we tested the role of serine/threonine phosphorylation in the Mtb response to altered oxygen status, using an in vitro model of latency (hypoxia) and reactivation (reaeration). Broad kinase inhibition compromised survival of Mtb in reaeration. Activity-based protein profiling and genetic mutation identified PknB as the kinase critical for surviving hypoxia. Mtb replication was highly sensitive to changes in PknB levels in aerated culture, and even more so in hypoxia. A mutant overexpressing PknB specifically in hypoxia showed a 10-fold loss in viability and gross morphological defects in low oxygen conditions. In contrast, chemically reducing PknB activity during hypoxia specifically compromised resumption of growth during reaeration. These data support a model in which PknB activity is reduced to achieve bacteriostasis, and elevated when replication resumes. Together, these data show that phosphosignaling controls replicative transitions associated with latency and reactivation, that PknB is a major regulator of these transitions, and that PknB could provide a highly vulnerable therapeutic target at every step of the Mtb life cycle-active disease, latency, and reactivation.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/genética , Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Anaerobiose , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbazóis/farmacologia , Alcaloides Indólicos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Oxigênio/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Serina/metabolismo , Transdução de Sinais , Treonina/metabolismo
14.
PLoS One ; 8(6): e67016, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23805289

RESUMO

Identification of CD8(+) T cell antigens/epitopes expressed by human pathogens with large genomes is especially challenging, yet necessary for vaccine development. Immunity to tuberculosis, a leading cause of mortality worldwide, requires CD8(+) T cell immunity, yet the repertoire of CD8 antigens/epitopes remains undefined. We used integrated computational and proteomic approaches to screen 10% of the Mycobacterium tuberculosis (Mtb) proteome for CD8 Mtb antigens. We designed a weighting schema based upon a Multiple Attribute Decision Making:framework to select 10% of the Mtb proteome with a high probability of containing CD8(+) T cell epitopes. We created a synthetic peptide library consisting of 15-mers overlapping by 11 aa. Using the interferon-γ ELISPOT assay and Mtb-infected dendritic cells as antigen presenting cells, we screened Mtb-specific CD8(+) T cell clones restricted by classical MHC class I molecules (MHC class Ia molecules), that were isolated from Mtb-infected humans, against this library. Three novel CD8 antigens were unambiguously identified: the EsxJ family (Rv1038c, Rv1197, Rv3620c, Rv2347c, Rv1792), PE9 (Rv1088), and PE_PGRS42 (Rv2487c). The epitopes are B5701-restricted EsxJ24-34, B3905-restricted PE953-67, and B3514-restricted PE_PGRS4248-56, respectively. The utility of peptide libraries in identifying unknown epitopes recognized by classically restricted CD8(+) T cells was confirmed, which can be applied to other intracellular pathogens with large size genomes. In addition, we identified three novel Mtb epitopes/antigens that may be evaluated for inclusion in vaccines and/or diagnostics for tuberculosis.


Assuntos
Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Epitopos de Linfócito T/análise , Biblioteca de Peptídeos , Tuberculose/patologia , Sequência de Aminoácidos , Antígenos CD8/química , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , ELISPOT , Mapeamento de Epitopos , Epitopos de Linfócito T/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Monócitos/citologia , Mycobacterium tuberculosis/fisiologia , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia , Proteômica , Tuberculose/imunologia , Tuberculose/microbiologia
15.
J Biol Chem ; 286(51): 43668-43678, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22045806

RESUMO

Mycobacterium tuberculosis, the bacterium that causes tuberculosis, imports and metabolizes host cholesterol during infection. This ability is important in the chronic phase of infection. Here we investigate the role of the intracellular growth operon (igr), which has previously been identified as having a cholesterol-sensitive phenotype in vitro and which is important for intracellular growth of the mycobacteria. We have employed isotopically labeled low density lipoproteins containing either [1,7,15,22,26-(14)C]cholesterol or [1,7,15,22,26-(13)C]cholesterol and high resolution LC/MS as tools to profile the cholesterol-derived metabolome of an igr operon-disrupted mutant (Δigr) of M. tuberculosis. A partially metabolized cholesterol species accumulated in the Δigr knock-out strain that was absent in the complemented and parental wild-type strains. Structural elucidation by multidimensional 1H and 13C NMR spectroscopy revealed the accumulated metabolite to be methyl 1ß-(2'-propanoate)-3aα-H-4α-(3'-propanoic acid)-7aß-methylhexahydro-5-indanone. Heterologously expressed and purified FadE28-FadE29, an acyl-CoA dehydrogenase encoded by the igr operon, catalyzes the dehydrogenation of 2'-propanoyl-CoA ester side chains in substrates with structures analogous to the characterized metabolite. Based on the structure of the isolated metabolite, enzyme activity, and bioinformatic annotations, we assign the primary function of the igr operon to be degradation of the 2'-propanoate side chain. Therefore, the igr operon is necessary to completely metabolize the side chain of cholesterol metabolites.


Assuntos
Colesterol/química , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Acil-CoA Desidrogenase/metabolismo , Catálise , LDL-Colesterol/química , Regulação Bacteriana da Expressão Gênica , Células Hep G2 , Humanos , Isótopos/química , Lipídeos/química , Mutação , Óperon/genética , Fenótipo , Esteroides/química , Tuberculose/metabolismo
16.
PLoS One ; 6(6): e21371, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21712953

RESUMO

The DosR regulon and the Enduring Hypoxic Response (EHR) define a group of M. tuberculosis genes that are specifically induced in bacilli exposed in vitro to conditions thought to mimic the environment encountered by Mycobacteria during latent infection. Although well described in humans, latent mycobacterial infection in cattle remains poorly understood. Thus, the aim of this study was to identify antigens that may potentially disclose cattle with latent M. bovis infection. To this end, we initially screened 57 pools of overlapping peptides representing 4 DosR regulon and 29 EHR antigens for their ability to stimulate an immune response in whole blood from TB-reactor cattle using IFN-γ and IL-2 as readouts. All 4 DosR regulon proteins were poorly recognized (maximum responder frequency of 10%). For the EHR antigens, both IFN-γ and IL-2 revealed similar response hierarchies, with responder frequencies ranging from 54% down to 3% depending on the given EHR antigen. Furthermore, these results demonstrated that responses in the infected cattle were largely IFN-γ biased. To support the concept for their role in latency, we evaluated if EHR antigen responses were associated with lower pathology. The EHR antigen Rv0188 was recognised predominantly in animals presenting with low pathology scores, whereas responses to ESAT-6/CFP-10 or the other EHR antigens tested were prevalent across the pathology spectrum. However, when we determined the production of additional cytokines induced by the M. bovis antigens PPD-B or ESAT-6/CFP-10, we detected significantly greater PPD-B-induced production of the pro-inflammatory cytokine IL-1ß in animals recognizing Rv0188 (i.e. those with limited or no pathology). Thus, these results are consistent with the idea that responses to Rv0188 may identify a subset of animals at early stages of infection or in which disease progression may be limited.


Assuntos
Antígenos de Bactérias/imunologia , Mycobacterium bovis/imunologia , Tuberculose Bovina/imunologia , Tuberculose Bovina/patologia , Animais , Antígenos de Bactérias/genética , Bovinos , Citocinas/imunologia , Humanos , Interferon gama/imunologia , Interleucina-2/imunologia , Peptídeos/genética , Peptídeos/imunologia , Regulon , Tuberculose Bovina/microbiologia
17.
Infect Immun ; 79(1): 59-66, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20974821

RESUMO

Mycobacterium bovis BCG strains are live, attenuated vaccines generated through decades of in vitro passage. Because in vitro growth does not select for interaction with the host, it has been hypothesized that genetic loci lost from BCG code for virulence determinants that are dispensable for growth in the laboratory, as exemplified by Region of Difference 1 (RD1), which was lost during the original derivation of BCG between 1908 and 1921. Region of Difference 2 (RD2) was lost during the ongoing propagation of BCG between 1927 and 1931, a time that coincides with reports of the ongoing attenuation of the vaccine. In this study, RD2 has been disrupted in M. tuberculosis H37Rv to test whether its loss contributed to the further attenuation of BCG. The deletion of RD2 did not affect in vitro growth; in contrast, the mutant manifested a decrease in pulmonary and splenic bacterial burdens and reduced pathology in C57BL/6 mice at early time points. This attenuated phenotype was complemented by reintroducing the genes Rv1979c to Rv1982 (including mpt64) but not Rv1985c to Rv1986. In RAW 264.7 macrophages, H37Rv:ΔRD2 showed a decreased proliferation and impaired modulation of the host innate immune response; both observations were complemented with Rv1979c to Rv1982. To test the effect of RD2 disruption on innate immunity, Rag(-/-) mice were infected; H37Rv:ΔRD2 had increased survival times compared those of H37Rv. These findings support the notion that the safety profile of certain BCG vaccines stems from multiple attenuating mutations, with the RD2 deletion resulting in a less-virulent organism through the impaired bacterial manipulation of the host innate immune response.


Assuntos
Mycobacterium tuberculosis/patogenicidade , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Pulmão/microbiologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Baço/microbiologia , Virulência
18.
PLoS One ; 5(7): e11622, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20661284

RESUMO

Mycobacterium tuberculosis (MTB) enters a non-replicating state when exposed to low oxygen tension, a condition the bacillus encounters in granulomas during infection. Determining how mycobacteria enter and maintain this state is a major focus of research. However, from a public health standpoint the importance of latent TB is its ability to reactivate. The mechanism by which mycobacteria return to a replicating state upon re-exposure to favorable conditions is not understood. In this study, we utilized reaeration from a defined hypoxia model to characterize the adaptive response of MTB following a return to favorable growth conditions. Global transcriptional analysis identified the approximately 100 gene Reaeration Response, induced relative to both log-phase and hypoxic MTB. This response includes chaperones and proteases, as well as the transcription factor Rv2745c, which we characterize as a Clp protease gene regulator (ClgR) orthologue. During reaeration, genes repressed during hypoxia are also upregulated in a wave of transcription that includes genes crucial to transcription, translation and oxidative phosphorylation and culminates in bacterial replication. In sum, this study defines a new transcriptional response of MTB with potential relevance to disease, and implicates ClgR as a regulator involved in resumption of replication following hypoxia.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Western Blotting , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Mycobacterium tuberculosis/genética , Análise de Sequência com Séries de Oligonucleotídeos
19.
J Bacteriol ; 191(16): 5232-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19542286

RESUMO

Recently, cholesterol was identified as a physiologically important nutrient for Mycobacterium tuberculosis survival in chronically infected mice. However, it remained unclear precisely when cholesterol is available to the bacterium and what additional bacterial functions are required for its metabolism. Here, we show that the igr locus, which we previously found to be essential for intracellular growth and virulence of M. tuberculosis, is required for cholesterol metabolism. While igr-deficient strains grow identically to the wild type in the presence of short- and long-chain fatty acids, the growth of these bacteria is completely inhibited in the presence of cholesterol. Interestingly, this mutant is still able to respire under cholesterol-dependent growth inhibition, suggesting that the bacteria can metabolize other carbon sources during cholesterol toxicity. Consistent with this hypothesis, we found that the growth-inhibitory effect of cholesterol in vitro depends on cholesterol import, as mutation of the mce4 sterol uptake system partially suppresses this effect. In addition, the Delta igr mutant growth defect during the early phase of disease is completely suppressed by mutating mce4, implicating cholesterol intoxication as the primary mechanism of attenuation. We conclude that M. tuberculosis metabolizes cholesterol throughout infection.


Assuntos
Proteínas de Bactérias/fisiologia , Colesterol/metabolismo , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/genética , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Bactérias/genética , Colesterol/farmacologia , Feminino , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo
20.
J Infect Dis ; 198(12): 1851-5, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18983252

RESUMO

Although tuberculous granulomas, which are composed of infected macrophages and other immune cells, have long been considered impermeable structures, recent studies have shown that superinfecting Mycobacterium marinum traffic rapidly to established fish and frog granulomas by host-mediated and Mycobacterium-directed mechanisms. The present study shows that superinfecting Mycobacterium tuberculosis and Mycobacterium bovis bacille Calmette-Guérin similarly home to established granulomas in mice. Furthermore, 2 prominent mycobacterial virulence determinants, Erp and ESX-1, do not affect this cellular trafficking. These findings suggest that homing of infected macrophages to sites of infection is a general feature of the pathogenesis of tuberculosis and has important consequences for therapeutic strategies.


Assuntos
Proteínas de Bactérias/genética , Granuloma/microbiologia , Infecções por Mycobacterium/microbiologia , Mycobacterium bovis/fisiologia , Mycobacterium tuberculosis/fisiologia , Superinfecção , Animais , Proteínas de Bactérias/metabolismo , Quimiotaxia , Feminino , Regulação Bacteriana da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium bovis/genética , Mycobacterium bovis/patogenicidade , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA