Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 13(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540766

RESUMO

Creatine metabolism is an important component of cellular energy homeostasis. Via the creatine kinase circuit, creatine derived from our diet or synthesized endogenously provides spatial and temporal maintenance of intracellular adenosine triphosphate (ATP) production; this is particularly important for cells with high or fluctuating energy demands. The use of this circuit by tissues within the female reproductive system, as well as the placenta and the developing fetus during pregnancy is apparent throughout the literature, with some studies linking perturbations in creatine metabolism to reduced fertility and poor pregnancy outcomes. Maternal dietary creatine supplementation during pregnancy as a safeguard against hypoxia-induced perinatal injury, particularly that of the brain, has also been widely studied in pre-clinical in vitro and small animal models. However, there is still no consensus on whether creatine is essential for successful reproduction. This review consolidates the available literature on creatine metabolism in female reproduction, pregnancy and the early neonatal period. Creatine metabolism is discussed in relation to cellular bioenergetics and de novo synthesis, as well as the potential to use dietary creatine in a reproductive setting. We highlight the apparent knowledge gaps and the research "road forward" to understand, and then utilize, creatine to improve reproductive health and perinatal outcomes.


Assuntos
Creatina/metabolismo , Saúde do Lactente , Reprodução/fisiologia , Trifosfato de Adenosina/biossíntese , Animais , Encéfalo/embriologia , Creatina/administração & dosagem , Dieta , Metabolismo Energético/fisiologia , Feminino , Desenvolvimento Fetal/fisiologia , Feto/metabolismo , Genitália Feminina/metabolismo , Humanos , Recém-Nascido , Masculino , Placenta/metabolismo , Gravidez
2.
Elife ; 92020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33355532

RESUMO

Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare and aggressive form of ovarian cancer. SCCOHT tumors have inactivating mutations in SMARCA4 (BRG1), one of the two mutually exclusive ATPases of the SWI/SNF chromatin remodeling complex. To address the role that BRG1 loss plays in SCCOHT tumorigenesis, we performed integrative multi-omic analyses in SCCOHT cell lines +/- BRG1 reexpression. BRG1 reexpression induced a gene and protein signature similar to an epithelial cell and gained chromatin accessibility sites correlated with other epithelial originating TCGA tumors. Gained chromatin accessibility and BRG1 recruited sites were strongly enriched for transcription-factor-binding motifs of AP-1 family members. Furthermore, AP-1 motifs were enriched at the promoters of highly upregulated epithelial genes. Using a dominant-negative AP-1 cell line, we found that both AP-1 DNA-binding activity and BRG1 reexpression are necessary for the gene and protein expression of epithelial genes. Our study demonstrates that BRG1 reexpression drives an epithelial-like gene and protein signature in SCCOHT cells that depends upon by AP-1 activity.


Assuntos
Carcinoma de Células Pequenas/patologia , DNA Helicases/genética , Hipercalcemia/patologia , Proteínas Nucleares/genética , Neoplasias Ovarianas/metabolismo , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/genética , Biomarcadores Tumorais/análise , Carcinoma de Células Pequenas/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , DNA Helicases/metabolismo , Feminino , Humanos , Hipercalcemia/genética , Mutação/genética , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/patologia , Ovário/metabolismo , Ovário/patologia , Fator de Transcrição AP-1/genética , Fatores de Transcrição/metabolismo
3.
Am J Med Genet A ; 179(6): 1098-1106, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30908866

RESUMO

The neurofibromatoses are inherited, tumor suppressor disorders that are characterized by multiple, benign peripheral nerve sheath tumors and other nervous system tumors. Each disease is associated with a distinct genetic mutation and with a different pathogenesis and clinical course. Neurofibromatosis 1 (NF1) is common and epitomized by multiple neurofibromas with widespread complications. NF2 and schwannomatosis are rare diseases that are typified by multiple schwannomas that are particularly painful in people with schwannomatosis. Since 1985, the Children's Tumor Foundation (formerly the National Neurofibromatosis Foundation) has hosted an international Neurofibromatosis Conference, bringing together international participants who are focused on NF research and clinical care. The 2017 Conference, held in Washington, DC, was among the largest gatherings of NF researchers to date and included presentations from clinicians and basic scientists, highlighting new data regarding the molecular and cellular mechanisms underlying each of these diseases as well as results from clinical studies and clinical trials. This article summarizes the findings presented at the meeting and represents the current state-of-the art for NF research.


Assuntos
Neurilemoma/etiologia , Neurofibromatoses/etiologia , Neurofibromatose 1/etiologia , Neurofibromatose 2/etiologia , Neoplasias Cutâneas/etiologia , Animais , Suscetibilidade a Doenças , Humanos , Neurilemoma/diagnóstico , Neurilemoma/metabolismo , Neurilemoma/terapia , Neurofibromatoses/diagnóstico , Neurofibromatoses/metabolismo , Neurofibromatoses/terapia , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/metabolismo , Neurofibromatose 1/terapia , Neurofibromatose 2/diagnóstico , Neurofibromatose 2/metabolismo , Neurofibromatose 2/terapia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/terapia
4.
J Clin Invest ; 128(5): 2025-2041, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29664021

RESUMO

Cerebral white matter injury (WMI) persistently disrupts myelin regeneration by oligodendrocyte progenitor cells (OPCs). We identified a specific bioactive hyaluronan fragment (bHAf) that downregulates myelin gene expression and chronically blocks OPC maturation and myelination via a tolerance-like mechanism that dysregulates pro-myelination signaling via AKT. Desensitization of AKT occurs via TLR4 but not TLR2 or CD44. OPC differentiation was selectively blocked by bHAf in a maturation-dependent fashion at the late OPC (preOL) stage by a noncanonical TLR4/TRIF pathway that induced persistent activation of the FoxO3 transcription factor downstream of AKT. Activated FoxO3 selectively localized to oligodendrocyte lineage cells in white matter lesions from human preterm neonates and adults with multiple sclerosis. FoxO3 constraint of OPC maturation was bHAf dependent, and involved interactions at the FoxO3 and MBP promoters with the chromatin remodeling factor Brg1 and the transcription factor Olig2, which regulate OPC differentiation. WMI has adapted an immune tolerance-like mechanism whereby persistent engagement of TLR4 by bHAf promotes an OPC niche at the expense of myelination by engaging a FoxO3 signaling pathway that chronically constrains OPC differentiation.


Assuntos
Proteína Forkhead Box O3/imunologia , Tolerância Imunológica , Células Precursoras de Oligodendrócitos/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Transdução de Sinais/imunologia , Receptores Toll-Like/imunologia , Animais , DNA Helicases/genética , DNA Helicases/imunologia , Feminino , Proteína Forkhead Box O3/genética , Humanos , Camundongos , Camundongos Knockout , Neuregulina-1/genética , Neuregulina-1/imunologia , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Células Precursoras de Oligodendrócitos/patologia , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/genética , Receptores Toll-Like/genética , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
5.
Prog Neurobiol ; 152: 149-165, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-26854064

RESUMO

The neurofibromatoses (NF) are a group of rare genetic disorders that can affect all races equally at an incidence from 1:3000 (NF1) to a log unit lower for NF2 and schwannomatosis. Since the research community is reporting an increasing number of malignant cancers that carry mutations in the NF genes, the general interest of both the research and pharma community is increasing and the authors saw an opportunity to present a novel, fresh approach to drug discovery in NF. The aim of the paper is to challenge the current drug discovery approach to NF, whereby existing targeted therapies that are either in the clinic or on the market for other disease indications are repurposed for NF. We offer a suggestion for an alternative drug discovery approach. In the new approach, selective and tolerable targeted therapies would be developed for NF and later expanded to patients with more complex diseases such as malignant cancer in which the NF downstream pathways are deregulated. The Children's Tumor Foundation, together with some other major NF funders, is playing a key role in funding critical initiatives that will accelerate the development of better targeted therapies for NF patients, while these novel, innovative treatments could potentially be beneficial to molecularly characterized cancer patients in which NF mutations have been identified.


Assuntos
Ensaios Clínicos como Assunto/organização & administração , Descoberta de Drogas/tendências , Medicina Baseada em Evidências/tendências , Predisposição Genética para Doença/genética , Neurofibromatoses/tratamento farmacológico , Neurofibromatoses/genética , Humanos , Resultado do Tratamento
6.
Dev Biol ; 413(2): 173-87, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27067865

RESUMO

The Olig2 basic-helix-loop-helix transcription factor promotes oligodendrocyte specification in early neural progenitor cells (NPCs), including radial glial cells, in part by recruiting SWI/SNF chromatin remodeling complexes to the enhancers of genes involved in oligodendrocyte differentiation. How Olig2 expression is regulated during oligodendrogliogenesis is not clear. Here, we find that the Brg1 subunit of SWI/SNF complexes interacts with a proximal Olig2 promoter and represses Olig2 transcription in the mouse cortex at E14, when oligodendrocyte progenitors (OPCs) are not yet found in this location. Brg1 does not interact with the Olig2 promoter in the E14 ganglionic eminence, where NPCs differentiate into Olig2-positive OPCs. Consistent with these findings, Brg1-null NPCs demonstrate precocious expression of Olig2 in the cortex. However, these cells fail to differentiate into OPCs. We further find that Brg1 is necessary for neuroepithelial-to-radial glial cell transition, but not neuronal differentiation despite a reduction in expression of the pro-neural transcription factor Pax6. Collectively, these and earlier findings support a model whereby Brg1 promotes neurogenic radial glial progenitor cell specification but is dispensable for neuronal differentiation. Concurrently, Brg1 represses Olig2 expression and the specification of OPCs, but is required for OPC differentiation and oligodendrocyte maturation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , DNA Helicases/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/fisiologia , Oligodendroglia/citologia , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Células Cultivadas , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Neurogênese , Fator de Transcrição 2 de Oligodendrócitos , Regiões Promotoras Genéticas , Células-Tronco/citologia
7.
J Neuroimmunol ; 291: 1-10, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26857488

RESUMO

Japanese macaque encephalomyelitis (JME) is an inflammatory demyelinating disease that occurs spontaneously in a colony of Japanese macaques (JM) at the Oregon National Primate Research Center. Animals with JME display clinical signs resembling multiple sclerosis (MS), and magnetic resonance imaging reveals multiple T2-weighted hyperintensities and gadolinium-enhancing lesions in the central nervous system (CNS). Here we undertook studies to determine if JME possesses features of an immune-mediated disease in the CNS. Comparable to MS, the CNS of animals with JME contain active lesions positive for IL-17, CD4+ T cells with Th1 and Th17 phenotypes, CD8+ T cells, and positive CSF findings.


Assuntos
Sistema Nervoso Central/patologia , Encefalomielite/embriologia , Encefalomielite/patologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Animais , Antígenos CD/metabolismo , Linfócitos B/metabolismo , Linfócitos B/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Linfócitos/metabolismo , Linfócitos/patologia , Macaca , Macrófagos/metabolismo , Macrófagos/patologia , Imageamento por Ressonância Magnética , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Microglia/patologia , Proteína Básica da Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo
8.
Int J Biol Macromol ; 86: 917-28, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26893053

RESUMO

Hyaluronic acid (HA), is a glycosaminoglycan comprised of repeating disaccharide units of N-acetyl-D-glucosamine and D-glucuronic acid. HA is synthesized by hyaluronan synthases and reaches sizes in excess of 2MDa. It plays numerous roles in normal tissues but also has been implicated in inflammatory processes, multiple drug resistance, angiogenesis, tumorigenesis, water homeostasis, and altered viscoelasticity of extracellular matrix. The physicochemical properties of HA including its solubility and the availability of reactive functional groups facilitate chemical modifications on HA, which makes it a biocompatible material for use in tissue regeneration. HA-based biomaterials and bioscaffolds do not trigger allergies or inflammation and are hydrophilic which make them popular as injectable dermal and soft tissue fillers. They are manufactured in different forms including hydrogels, tubes, sheets and meshes. Here, we review the pathophysiological and pharmacological properties and the clinical uses of native and modified HA. The review highlights the therapeutic applications of HA-based bioscaffolds in organ-specific tissue engineering and regenerative medicine.


Assuntos
Materiais Biocompatíveis , Ácido Hialurônico , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Alicerces Teciduais/química
9.
PLoS One ; 9(11): e112800, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25390897

RESUMO

OBJECTIVE: Although the spectrum of white matter injury (WMI) in preterm infants is shifting from cystic necrotic lesions to milder forms, the factors that contribute to this changing spectrum are unclear. We hypothesized that recurrent hypoxia-ischemia (rHI) will exacerbate the spectrum of WMI defined by markers of inflammation and molecules related to the extracellular matrix (hyaluronan (HA) and the PH20 hyaluronidase) that regulate maturation of the oligodendrocyte (OL) lineage after WMI. METHODS: We employed a preterm fetal sheep model of in utero moderate hypoxemia and global severe but not complete cerebral ischemia that reproduces the spectrum of human WMI. The response to rHI was compared against corresponding early or later single episodes of HI. An ordinal rating scale of WMI was compared against an unbiased quantitative image analysis protocol that provided continuous histo-pathological outcome measures for astrogliosis and microglial activation. Late oligodendrocyte progenitors (preOLs) were quantified by stereology. Analysis of hyaluronan and the hyaluronidase PH20 defined the progressive response of the extracellular matrix to WMI. RESULTS: rHI resulted in a more severe spectrum of WMI with a greater burden of necrosis, but an expanded population of preOLs that displayed reduced susceptibility to cell death. WMI from single episodes of HI or rHI was accompanied by elevated HA levels and increased labeling for PH20. Expression of PH20 in fetal ovine WMI was confirmed by RT-PCR and RNA-sequencing. CONCLUSIONS: rHI is associated with an increased risk for more severe WMI with necrosis, but reduced risk for preOL degeneration compared to single episodes of HI. Expansion of the preOL pool may be linked to elevated hyaluronan and PH20.


Assuntos
Hipóxia-Isquemia Encefálica/patologia , Substância Branca/lesões , Substância Branca/patologia , Animais , Animais Recém-Nascidos , Moléculas de Adesão Celular/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Feto/metabolismo , Feto/patologia , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Necrose/metabolismo , Necrose/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Ovinos
10.
Am J Med Genet A ; 161A(3): 405-16, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23401320

RESUMO

Schwannomatosis is the third major form of neurofibromatosis and is characterized by the development of multiple schwannomas in the absence of bilateral vestibular schwannomas. The 2011 Schwannomatosis Update was organized by the Children's Tumor Foundation (www.ctf.org) and held in Los Angeles, CA, from June 5-8, 2011. This article summarizes the highlights presented at the Conference and represents the "state-of-the-field" in 2011. Genetic studies indicate that constitutional mutations in the SMARCB1 tumor suppressor gene occur in 40-50% of familial cases and in 8-10% of sporadic cases of schwannomatosis. Tumorigenesis is thought to occur through a four-hit, three-step model, beginning with a germline mutation in SMARCB1 (hit 1), followed by loss of a portion of chromosome 22 that contains the second SMARCB1 allele and one NF2 allele (hits 2 and 3), followed by mutation of the remaining wild-type NF2 allele (hit 4). Insights from research on HIV and pediatric rhabdoid tumors have shed light on potential molecular pathways that are dysregulated in schwannomatosis-related schwannomas. Mouse models of schwannomatosis have been developed and promise to further expand our understanding of tumorigenesis and the tumor microenvironment. Clinical reports have described the occurrence of intracranial meningiomas in schwannomatosis patients and in families with germline SMARCB1 mutations. The authors propose updated diagnostic criteria to incorporate new clinical and genetic findings since 2005. In the next 5 years, the authors expect that advances in basic research in the pathogenesis of schwannomatosis will lead toward clinical investigations of potential drug therapies.


Assuntos
Neurilemoma/genética , Neurofibromatoses/genética , Neoplasias Cutâneas/genética , Animais , Proteínas Cromossômicas não Histona/fisiologia , Proteínas de Ligação a DNA/fisiologia , Modelos Animais de Doenças , Humanos , Neurilemoma/patologia , Neurilemoma/terapia , Neurofibromatoses/patologia , Neurofibromatoses/terapia , Proteína SMARCB1 , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Fatores de Transcrição/fisiologia , Carga Tumoral
11.
Int J Cancer ; 132(12): 2767-77, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23197309

RESUMO

Malignant rhabdoid tumors (MRTs) are rare, aggressive cancers occuring in young children primarily through inactivation of the SNF5(INI1, SMARCB1) tumor suppressor gene. We and others have demonstrated that mice heterozygous for a Snf5 null allele develop MRTs with partial penetrance. We have also shown that Snf5(+/-) mice that lack expression of the pRb family, due to TgT121 transgene expression, develop MRTs with increased penetrance and decreased latency. Here, we report that altering the genetic background has substantial effects upon MRT development in Snf5(+/--) and TgT121 ;Snf5(+/-) mice, with a mixed F1 background resulting in increased latency and the appearance of brain tumors. We also report the establishment of the first mouse MRT cell lines that recapitulate many features of their human counterparts. Our studies provide further insight into the genetic influences on MRT development as well as provide valuable new cell culture and genetically engineered mouse models for the study of CNS-MRT etiology.


Assuntos
Linhagem Celular Tumoral , Tumor Rabdoide/genética , Animais , Proliferação de Células , Transformação Celular Neoplásica/genética , Neoplasias do Plexo Corióideo/genética , Neoplasias do Plexo Corióideo/patologia , Proteínas Cromossômicas não Histona/genética , Modelos Animais de Doenças , Genótipo , Humanos , Cariótipo , Camundongos , Camundongos Transgênicos , Fenótipo , Tumor Rabdoide/patologia , Proteína SMARCB1
12.
J Neurosci ; 32(45): 15715-27, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23136411

RESUMO

Müller cells are the major glia of the retina that serve numerous functions essential to retinal homeostasis, yet the contribution of Müller glial dysfunction to retinal diseases remains largely unknown. We have developed a transgenic model using a portion of the regulatory region of the retinaldehyde binding protein 1 gene for conditional Müller cell ablation and the consequences of primary Müller cell dysfunction have been studied in adult mice. We found that selective ablation of Müller cells led to photoreceptor apoptosis, vascular telangiectasis, blood-retinal barrier breakdown and, later, intraretinal neovascularization. These changes were accompanied by impaired retinal function and an imbalance between vascular endothelial growth factor-A (VEGF-A) and pigment epithelium-derived factor. Intravitreal injection of ciliary neurotrophic factor inhibited photoreceptor injury but had no effect on the vasculopathy. Conversely, inhibition of VEGF-A activity attenuated vascular leak but did not protect photoreceptors. Our findings show that Müller glial deficiency may be an important upstream cause of retinal neuronal and vascular pathologies in retinal diseases. Combined neuroprotective and anti-angiogenic therapies may be required to treat Müller cell deficiency in retinal diseases and in other parts of the CNS associated with glial dysfunction.


Assuntos
Barreira Hematorretiniana/patologia , Neuroglia/patologia , Células Fotorreceptoras/patologia , Retina/patologia , Vasos Retinianos/patologia , Animais , Apoptose/efeitos dos fármacos , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/fisiopatologia , Fator Neurotrófico Ciliar/farmacologia , Proteínas do Olho/metabolismo , Camundongos , Camundongos Transgênicos , Fatores de Crescimento Neural/metabolismo , Neuroglia/metabolismo , Células Fotorreceptoras/efeitos dos fármacos , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Retina/fisiopatologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Neovascularização Retiniana/fisiopatologia , Telangiectasia Retiniana/metabolismo , Telangiectasia Retiniana/patologia , Telangiectasia Retiniana/fisiopatologia , Vasos Retinianos/metabolismo , Serpinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Sci Transl Med ; 4(155): 155ra136, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23052293

RESUMO

Shiverer-immunodeficient (Shi-id) mice demonstrate defective myelination in the central nervous system (CNS) and significant ataxia by 2 to 3 weeks of life. Expanded, banked human neural stem cells (HuCNS-SCs) were transplanted into three sites in the brains of neonatal or juvenile Shi-id mice, which were asymptomatic or showed advanced hypomyelination, respectively. In both groups of mice, HuCNS-SCs engrafted and underwent preferential differentiation into oligodendrocytes. These oligodendrocytes generated compact myelin with normalized nodal organization, ultrastructure, and axon conduction velocities. Myelination was equivalent in neonatal and juvenile mice by quantitative histopathology and high-field ex vivo magnetic resonance imaging, which, through fractional anisotropy, revealed CNS myelination 5 to 7 weeks after HuCNS-SC transplantation. Transplanted HuCNS-SCs generated functional myelin in the CNS, even in animals with severe symptomatic hypomyelination, suggesting that this strategy may be useful for treating dysmyelinating diseases.


Assuntos
Doenças Desmielinizantes/terapia , Bainha de Mielina/metabolismo , Células-Tronco Neurais/citologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Camundongos , Células-Tronco Neurais/fisiologia , Transplante de Células-Tronco
14.
Neurobiol Aging ; 33(4): 830.e13-24, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21872361

RESUMO

The glycosaminoglycan hyaluronan (HA) accumulates in central nervous system lesions where it limits astrogliosis but also inhibits oligodendrocyte progenitor cell (OPC) maturation. The role of hyaluronan in normative brain aging has not been previously investigated. Here, we tested the hypothesis that HA accumulates in the aging nonhuman primate brain. We found that HA levels significantly increase with age in the gray matter of rhesus macaques. HA accumulation was linked to age-related increases in the transcription of HA synthase-1 (HAS1) expressed by reactive astrocytes but not changes in the expression of other HAS genes or hyaluronidases. HA accumulation was accompanied by increased expression of CD44, a transmembrane HA receptor. Areas of gray matter with elevated HA in older animals demonstrated increased numbers of olig2(+) OPCs, consistent with the notion that HA may influence OPC expansion or maturation. Collectively, these data indicate that HAS1 and CD44 are transcriptionally upregulated in astrocytes during normative aging and are linked to HA accumulation in gray matter.


Assuntos
Envelhecimento , Astrócitos/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Ácido Hialurônico/metabolismo , Fatores Etários , Animais , Feminino , Glucuronosiltransferase/metabolismo , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Hialuronan Sintases , Ácido Hialurônico/genética , Macaca fascicularis , Macaca mulatta , Masculino , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/metabolismo , RNA Mensageiro/metabolismo
15.
Glia ; 57(7): 777-90, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19031437

RESUMO

Steroidal estrogens can regulate inflammatory immune responses and may be involved in the suppression of multiple sclerosis (MS) during pregnancy. However, the risks and side effects associated with steroidal estrogens may limit their usefulness for long-term MS therapy. Selective estrogen receptor modulators (SERMs) could provide an alternative therapeutic strategy, because they behave as estrogen agonists in some tissues, but are either inert or behave like estrogen antagonists in other tissues. In this study, we investigated the ability of two commercially available SERMs (tamoxifen and raloxifene) to regulate myelin specific immunity and experimental autoimmune encephalomyelitis (EAE) in mice. Both tamoxifen and raloxifene suppressed myelin antigen specific T-cell proliferation. However, tamoxifen was more effective in this regard. Tamoxifen treatment reduced the induction of major histocompatibility complex II by lipopolysaccharide stimulated dendritic cells and decreased their ability to activate myelin specific T-cells. At lower doses, tamoxifen was found to increase the levels of Th2 transcription factors and induce a Th2 bias in cultures of myelin-specific splenocytes. EAE symptoms and the degree of demyelination were less severe in mice treated with tamoxifen than in control mice. These findings support the notion that tamoxifen or related SERMs are potential agents that could be used in the treatment of inflammatory autoimmune disorders that affect the central nervous system.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Proteínas da Mielina/imunologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Doenças Desmielinizantes/tratamento farmacológico , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Receptor alfa de Estrogênio/genética , Feminino , Genes MHC da Classe II/fisiologia , Imunidade Celular/efeitos dos fármacos , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Bainha de Mielina/imunologia , Cloridrato de Raloxifeno/uso terapêutico , Tamoxifeno/uso terapêutico
16.
J Neuropathol Exp Neurol ; 66(7): 637-49, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17620989

RESUMO

Multiple sclerosis (MS), the most common nontraumatic cause of neurologic disability in young adults in economically developed countries, is characterized by inflammation, gliosis, demyelination, and neuronal degeneration in the CNS. Bone marrow transplantation (BMT) can suppress inflammatory disease in a majority of patients with MS but retards clinical progression only in patients treated in the early stages of the disease. Here, we applied BMT in a mouse model of neuroinflammation, experimental autoimmune encephalomyelitis (EAE), and investigated the kinetics of reconstitution of the immune system in the periphery and in the CNS using bone marrow cells isolated from syngeneic donors constitutively expressing green fluorescent protein. This approach allowed us to dissect the contribution of donor cells to the turnover of resident microglia and to the pathogenesis of observed disease relapses after BMT. BMT effectively blocked or delayed EAE development when mice were treated early in the course of the disease but was without effect in mice with chronic disease. We found that there is minimal overall replacement of host microglia with donor cells in the CNS and that newly transplanted cells do not appear to contribute to disease progression. In contrast, EAE relapses are accompanied by the robust activation of endogenous microglial and macroglial cells, which further involves the maturation of endogenous Olig2 glial progenitor cells into reactive astrocytes through the cytoplasmic translocation of Olig2 and the expression of CD44 on the cellular membrane. The observed maturation of large numbers of reactive astrocytes from glial progenitors and the chronic activation of host microglial cells have relevance for our understanding of the resident glial response to inflammatory injury in the CNS. Our data indicate that reactivation of a local inflammatory process after BMT is sustained predominantly by endogenous microglia/macrophages.


Assuntos
Transplante de Medula Óssea/métodos , Microglia/fisiologia , Esclerose Múltipla/patologia , Esclerose Múltipla/cirurgia , Células-Tronco/fisiologia , Animais , Antígenos CD/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/patologia , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/cirurgia , Citometria de Fluxo/métodos , Proteína Glial Fibrilar Ácida/metabolismo , Glicoproteínas , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Fragmentos de Peptídeos , Medula Espinal/patologia
17.
Glia ; 55(7): 723-33, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17348023

RESUMO

Neurofibromatosis 1 (NF1) is a common genetic disease that predisposes patients to peripheral nerve tumors and central nervous system (CNS) abnormalities including low-grade astrocytomas and cognitive disabilities. Using mice with glial fibrillary acidic protein (GFAP)-targeted Nf1 loss (Nf1(GFAP)CKO mice), we found that Nf1(-/-) astrocytes proliferate faster and are more invasive than wild-type astrocytes. In light of our previous finding that aberrant expression of the MET receptor tyrosine kinase contributes to the invasiveness of human NF1-associated malignant peripheral nerve sheath tumors, we sought to determine whether MET expression is aberrant in the brains of Nf1 mutant mice. We found that Nf1(-/-) astrocytes express slightly more MET than wild-type cells in vitro, but do not express elevated MET in situ. However, fiber tracts containing myelinated axons in the hippocampus, midbrain, cerebral cortex, and cerebellum express higher than normal levels of MET in older (> or =6 months) Nf1(GFAP)CKO mice. Both Nf1(GFAP)CKO and wild-type astrocytes induced MET expression in neurites of wild-type hippocampal neurons in vitro, suggesting that astrocyte-derived signals may induce MET in Nf1 mutant mice. Because the Nf1 gene product functions as a RAS GTPase, we examined MET expression in the brains of mice with GFAP-targeted constitutively active forms of RAS. MET was elevated in axonal fiber tracts in mice with active K-RAS but not H-RAS. Collectively, these data suggest that loss of Nf1 in either astrocytes or GFAP(+) neural progenitor cells results in increased axonal MET expression, which may contribute to the CNS abnormalities in children and adults with NF1.


Assuntos
Envelhecimento/metabolismo , Axônios/metabolismo , Encéfalo/metabolismo , Proteína Glial Fibrilar Ácida/genética , Neurofibromina 1/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Astrócitos/metabolismo , Biomarcadores/metabolismo , Encéfalo/fisiopatologia , Comunicação Celular/fisiologia , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Predisposição Genética para Doença/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fibras Nervosas Mielinizadas/metabolismo , Neurofibromatose 1/genética , Células-Tronco/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
18.
Hum Mol Genet ; 16(6): 640-50, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17309881

RESUMO

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder linked to heterozygous de novo mutations in the MECP2 gene. MECP2 encodes methyl-CpG-binding protein 2 (MeCP2), which represses gene transcription by binding to 5-methylcytosine residues in symmetrically positioned CpG dinucleotides. Direct MeCP2 targets underlying RTT pathogenesis remain largely unknown. Here, we report that FXYD1, which encodes a transmembrane modulator of Na(+), K(+) -ATPase activity, is elevated in frontal cortex (FC) neurons of RTT patients and Mecp2-null mice. Increasing neuronal FXDY1 expression is sufficient to reduce dendritic arborization and spine formation, hallmarks of RTT neuropathology. Mecp2-null mouse cortical neurons have diminished Na(+),K(+)-ATPase activity, suggesting that aberrant FXYD1 expression contributes to abnormal neuronal activity in RTT. MeCP2 represses Fxyd1 transcription through direct interactions with sequences in the Fxyd1 promoter that are methylated in FC neurons. FXYD1 is therefore a MeCP2 target gene whose de-repression may directly contribute to RTT neuronal pathogenesis.


Assuntos
Encéfalo/metabolismo , Proteínas de Membrana/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Fosfoproteínas/genética , Síndrome de Rett/genética , Animais , Estudos de Casos e Controles , Metilação de DNA , Feminino , Expressão Gênica , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Regiões Promotoras Genéticas , Síndrome de Rett/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
19.
Oncogene ; 24(43): 6502-15, 2005 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16007173

RESUMO

4.1B is a member of the protein 4.1 superfamily of proteins that link transmembrane proteins to the actin cytoskeleton. The 4.1B gene localizes to chromosome 18p11.3, which undergoes loss of heterozygosity in mammary tumors. Here, we examine the expression of 4.1B in murine mammary epithelium and find that 4.1B is dramatically upregulated in mammary epithelial cells during pregnancy when there is extensive cell proliferation. In contrast, 4.1B is not expressed in virgin, lactating, or involuting mammary epithelium. To examine the consequence of 4.1B loss on mammary epithelial cell proliferation, we analysed mammary glands in 4.1B-null mice. 4.1B loss results in a significant increase in mammary epithelial cell proliferation during pregnancy, but has no effect on mammary epithelial cell proliferation, in virgin or involuting mice. Furthermore, we show that 4.1B inhibits the proliferation of mammary epithelial cell lines by inducing a G1 cell cycle arrest, characterized by decreased cyclin A expression and reduced Rb phosphorylation, and accompanied by reduced erbB2 phosphorylation. This cell cycle arrest does not involve alterations in the activities of MAPK, JNK, or Akt. Collectively, our findings demonstrate that 4.1B regulates mammary epithelial cell proliferation during pregnancy and suggest that its loss may influence mammary carcinoma pathogenesis in multiparous women.


Assuntos
Glândulas Mamárias Animais/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/citologia , Feminino , Fase G1/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Lactação , Glândulas Mamárias Animais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas dos Microfilamentos , Fosforilação , Gravidez , Prenhez/genética , Receptor ErbB-2/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas
20.
Cancer Res ; 65(9): 3542-7, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15867346

RESUMO

Brahma (Brm) and brahma-related gene-1 (Brg1) are mammalian homologues of SWI/SNF chromatin-remodeling factor subunits that can regulate both transcriptional activation and repression. Both Brg1 and Brm are mutated or deleted in numerous cancer cell lines, leading to the altered expression of genes that influence cell proliferation and metastasis. Here, we find that the promoters of two such genes, CD44 and E-cadherin, are hypermethylated in cells that have lost Brg1 or Brm. In two carcinoma cell lines that lack functional Brg1 and Brm, CD44 and E-cadherin expression are induced by the demethylating agent 5-aza-2'-deoxycytidine. Transfection with either Brg1 or Brm also induces CD44 and E-cadherin transcription and protein expression in these cells, as well as loss of methylation at sequences in the promoters of both genes. Chromatin immunoprecipitation assays show that Brg1 and Brm associate with these regions of the CD44 and E-cadherin promoters, suggesting that SWI/SNF protein complexes may directly influence the loss of DNA methylation. In vivo, Brm-deficient mice also show methylation and silencing of the CD44 promoter. Collectively, these data implicate loss of SWI/SNF-mediated transcriptional activation as a novel mechanism to increase DNA methylation in cancer cells and provide insight into the mechanisms underlying aberrant gene induction and repression during tumor progression.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Metilação de DNA , Fatores de Transcrição/fisiologia , Ativação Transcricional/fisiologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases , Células HeLa , Humanos , Receptores de Hialuronatos/genética , Camundongos , Células NIH 3T3 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA