Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hepatol Commun ; 8(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38551386

RESUMO

BACKGROUND: Histopathology remains the gold standard for diagnosing and staging metabolic dysfunction-associated steatotic liver disease (MASLD). The feasibility of studying MASLD progression in electronic medical records based on histological features is limited by the free-text nature of pathology reports. Here we introduce a natural language processing (NLP) algorithm to automatically score MASLD histology features. METHODS: From the Mass General Brigham health care system electronic medical record, we identified all patients (1987-2021) with steatosis on index liver biopsy after excluding excess alcohol use and other etiologies of liver disease. An NLP algorithm was constructed in Python to detect steatosis, lobular inflammation, ballooning, and fibrosis stage from pathology free-text and manually validated in >1200 pathology reports. Patients were followed from the index biopsy to incident decompensated liver disease accounting for covariates. RESULTS: The NLP algorithm demonstrated positive and negative predictive values from 93.5% to 100% for all histologic concepts. Among 3134 patients with biopsy-confirmed MASLD followed for 20,604 person-years, rates of the composite endpoint increased monotonically with worsening index fibrosis stage (p for linear trend <0.005). Compared to simple steatosis (incidence rate, 15.06/1000 person-years), the multivariable-adjusted HRs for cirrhosis were 1.04 (0.72-1.5) for metabolic dysfunction-associated steatohepatitis (MASH)/F0, 1.19 (0.92-1.54) for MASH/F1, 1.89 (1.41-2.52) for MASH/F2, and 4.21 (3.26-5.43) for MASH/F3. CONCLUSIONS: The NLP algorithm accurately scores histological features of MASLD from pathology free-text. This algorithm enabled the construction of a large and high-quality MASLD cohort across a multihospital health care system and disclosed an accelerating risk for cirrhosis based on the index MASLD fibrosis stage.


Assuntos
Fígado Gorduroso , Processamento de Linguagem Natural , Humanos , Cirrose Hepática/diagnóstico , Fígado Gorduroso/diagnóstico , Fígado Gorduroso/epidemiologia , Algoritmos , Biópsia
2.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38077056

RESUMO

Under chronic stress, cells must balance competing demands between cellular survival and tissue function. In metabolic dysfunction-associated steatotic liver disease (MASLD, formerly NAFLD/NASH), hepatocytes cooperate with structural and immune cells to perform crucial metabolic, synthetic, and detoxification functions despite nutrient imbalances. While prior work has emphasized stress-induced drivers of cell death, the dynamic adaptations of surviving cells and their functional repercussions remain unclear. Namely, we do not know which pathways and programs define cellular responses, what regulatory factors mediate (mal)adaptations, and how this aberrant activity connects to tissue-scale dysfunction and long-term disease outcomes. Here, by applying longitudinal single-cell multi -omics to a mouse model of chronic metabolic stress and extending to human cohorts, we show that stress drives survival-linked tradeoffs and metabolic rewiring, manifesting as shifts towards development-associated states in non-transformed hepatocytes with accompanying decreases in their professional functionality. Diet-induced adaptations occur significantly prior to tumorigenesis but parallel tumorigenesis-induced phenotypes and predict worsened human cancer survival. Through the development of a multi -omic computational gene regulatory inference framework and human in vitro and mouse in vivo genetic perturbations, we validate transcriptional (RELB, SOX4) and metabolic (HMGCS2) mediators that co-regulate and couple the balance between developmental state and hepatocyte functional identity programming. Our work defines cellular features of liver adaptation to chronic stress as well as their links to long-term disease outcomes and cancer hallmarks, unifying diverse axes of cellular dysfunction around core causal mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA