Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bone Marrow Transplant ; 56(3): 552-566, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33230186

RESUMO

Treatment with CD19 or CD22-targeted chimeric antigen receptor-engineered T (CD19/CD22 CAR-T) cells achieve complete responses in 60-90% of adults and children with refractory or relapsed (R/R) acute lymphoblastic leukemia (ALL). This led to the approval of tisagenlecleucel (Kymriah) by the FDA and several European regulatory agencies in ALL patients up to 25 years of age. Although CAR T-cell therapy is likely to transform the ALL therapeutic landscape, its development and wide dissemination have been impacted by the occurrence of significant toxicities; namely, cytokine release syndrome (CRS) and Immune effector cell-Associated Neurotoxicity Syndrome (ICANS) have been reported at higher rates in ALL patients compared to other B cell malignancies, particularly in the adult population. Here, we review recent data suggesting a significant proportion of ALL patients are at risk of developing severe, sometimes life-threatening, CRS, and ICANS after CD19 and CD22 CAR T-cell therapy. After describing the key clinical and laboratory features of severe CRS and ICANS, we explore the disease and treatment-related factors that may predict the severity of these toxicities. Last, we review strategies under investigation in the prophylactic and therapeutic settings to improve the safety of CAR T-cells for ALL.


Assuntos
Encefalopatias , Síndromes Neurotóxicas , Antígenos CD19 , Criança , Síndrome da Liberação de Citocina , Humanos , Imunoterapia Adotiva
2.
Front Pediatr ; 8: 284, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582592

RESUMO

Minor Histocompatibility (H) antigens are major histocompatibility complex (MHC)/Human Leukocyte Antigen (HLA)-bound peptides that differ between allogeneic hematopoietic stem cell transplantation (HCT) recipients and their donors as a result of genetic polymorphisms. Some minor H antigens can be used as therapeutic T cell targets to augment the graft-vs.-leukemia (GVL) effect in order to prevent or manage leukemia relapse after HCT. Graft engineering and post-HCT immunotherapies are being developed to optimize delivery of T cells specific for selected minor H antigens. These strategies have the potential to reduce relapse risk and thereby permit implementation of HCT approaches that are associated with less toxicity and fewer late effects, which is particularly important in the growing and developing pediatric patient. Most minor H antigens are expressed ubiquitously, including on epithelial tissues, and can be recognized by donor T cells following HCT, leading to graft-vs.-host disease (GVHD) as well as GVL. However, those minor H antigens that are expressed predominantly on hematopoietic cells can be targeted for selective GVL. Once full donor hematopoietic chimerism is achieved after HCT, hematopoietic-restricted minor H antigens are present only on residual recipient malignant hematopoietic cells, and these minor H antigens serve as tumor-specific antigens for donor T cells. Minor H antigen-specific T cells that are delivered as part of the donor hematopoietic stem cell graft at the time of HCT contribute to relapse prevention. However, in some cases the minor H antigen-specific T cells delivered with the graft may be quantitatively insufficient or become functionally impaired over time, leading to leukemia relapse. Following HCT, adoptive T cell immunotherapy can be used to treat or prevent relapse by delivering large numbers of donor T cells targeting hematopoietic-restricted minor H antigens. In this review, we discuss minor H antigens as T cell targets for augmenting the GVL effect in engineered HCT grafts and for post-HCT immunotherapy. We will highlight the importance of these developments for pediatric HCT.

3.
JCI Insight ; 5(9)2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32376800

RESUMO

Protection from relapse after allogeneic hematopoietic cell transplantation (HCT) is partly due to donor T cell-mediated graft-versus-leukemia (GVL) immune responses. Relapse remains common in HCT recipients, but strategies to augment GVL could significantly improve outcomes after HCT. Donor T cells with αß T cell receptors (TCRs) mediate GVL through recognition of minor histocompatibility antigens and alloantigens in HLA-matched and -mismatched HCT, respectively. αß T cells specific for other leukemia-associated antigens, including nonpolymorphic antigens and neoantigens, may also deliver an antileukemic effect. γδ T cells may contribute to GVL, although their biology and specificity are less well understood. Vaccination or adoptive transfer of donor-derived T cells with natural or transgenic receptors are strategies with potential to selectively enhance αß and γδ T cell GVL effects.


Assuntos
Efeito Enxerto vs Leucemia/imunologia , Transplante de Células-Tronco Hematopoéticas/métodos , Antígenos de Histocompatibilidade Menor/imunologia , Linfócitos T , Adulto , Linhagem Celular , Criança , Facilitação Imunológica de Enxerto , Humanos , Linfócitos T/citologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA