Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Biomedicines ; 12(8)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39200154

RESUMO

BACKGROUND: Platelets, a type of anucleated cell, play a crucial role in cardiovascular diseases (CVDs). Therefore, targeting platelet activation is essential for mitigating CVDs. Endogenous agonists, such as collagen, activate platelets by initiating signal transduction through specific platelet receptors, leading to platelet aggregation. Eugenol, primarily sourced from clove oil, is known for its antibacterial, anticancer, and anti-inflammatory properties, making it a valuable medicinal agent. In our previous study, eugenol was shown to inhibit platelet aggregation induced by collagen and arachidonic acid. We concluded that eugenol exerts a potent inhibitory effect on platelet activation by targeting the PLCγ2-PKC and cPLA2-TxA2 pathways, thereby suppressing platelet aggregation. In our current study, we found that eugenol significantly inhibits NF-κB activation. This led us to investigate the relationship between the NF-κB and cPLA2 pathways to elucidate how eugenol suppresses platelet activation. METHODS: In this study, we prepared platelet suspensions from the blood of healthy human donors to evaluate the inhibitory mechanisms of eugenol on platelet activation. We utilized immunoblotting and confocal microscopy to analyze these mechanisms in detail. Additionally, we assessed the anti-thrombotic effect of eugenol by observing fluorescein-induced platelet plug formation in the mesenteric microvessels of mice. RESULTS: For immunoblotting and confocal microscopy studies, eugenol significantly inhibited NF-κB-mediated signaling events stimulated by collagen in human platelets. Specifically, it reduced the phosphorylation of IKK and p65 and prevented the degradation of IκBα. Additionally, CAY10502, a cPLA2 inhibitor, significantly reduced NF-κB-mediated signaling events. In contrast, BAY11-7082, an IKK inhibitor, did not affect collagen-stimulated cPLA2 phosphorylation. These findings suggest that cPLA2 acts as an upstream regulator of NF-κB activation during platelet activation. Furthermore, both BAY11-7082 and CAY10502 significantly reduced the collagen-induced rise in intracellular calcium levels. In the animal study, eugenol demonstrated potential as an anti-thrombotic agent by significantly reducing platelet plug formation in fluorescein-irradiated mouse mesenteric microvessels. CONCLUSION: Our study uncovered a novel pathway in platelet activation involving the cPLA2-NF-κB axis, which plays a key role in the antiplatelet effects of eugenol. These findings suggest that eugenol could serve as a valuable and potent prophylactic or therapeutic option for arterial thrombosis.

2.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396774

RESUMO

Platelets assume a pivotal role in the pathogenesis of cardiovascular diseases (CVDs), emphasizing their significance in disease progression. Consequently, addressing CVDs necessitates a targeted approach focused on mitigating platelet activation. Eugenol, predominantly derived from clove oil, is recognized for its antibacterial, anticancer, and anti-inflammatory properties, rendering it a valuable medicinal agent. This investigation delves into the intricate mechanisms through which eugenol influences human platelets. At a low concentration of 2 µM, eugenol demonstrates inhibition of collagen and arachidonic acid (AA)-induced platelet aggregation. Notably, thrombin and U46619 remain unaffected by eugenol. Its modulatory effects extend to ATP release, P-selectin expression, and intracellular calcium levels ([Ca2+]i). Eugenol significantly inhibits various signaling cascades, including phospholipase Cγ2 (PLCγ2)/protein kinase C (PKC), phosphoinositide 3-kinase/Akt/glycogen synthase kinase-3ß, mitogen-activated protein kinases, and cytosolic phospholipase A2 (cPLA2)/thromboxane A2 (TxA2) formation induced by collagen. Eugenol selectively inhibited cPLA2/TxA2 phosphorylation induced by AA, not affecting p38 MAPK. In ADP-treated mice, eugenol reduced occluded lung vessels by platelet thrombi without extending bleeding time. In conclusion, eugenol exerts a potent inhibitory effect on platelet activation, achieved through the inhibition of the PLCγ2-PKC and cPLA2-TxA2 cascade, consequently suppressing platelet aggregation. These findings underscore the potential therapeutic applications of eugenol in CVDs.


Assuntos
Eugenol , Embolia Pulmonar , Humanos , Camundongos , Animais , Eugenol/farmacologia , Eugenol/uso terapêutico , Eugenol/metabolismo , Fosfolipase C gama/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças , Ativação Plaquetária , Agregação Plaquetária , Plaquetas/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Tromboxano A2/metabolismo , Colágeno/metabolismo , Embolia Pulmonar/tratamento farmacológico , Embolia Pulmonar/metabolismo , Fosfolipases A2 Citosólicas/metabolismo
3.
J Cell Mol Med ; 28(4): e18139, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334198

RESUMO

Platelets assume a pivotal role in the cardiovascular diseases (CVDs). Thus, targeting platelet activation is imperative for mitigating CVDs. Ginkgetin (GK), from Ginkgo biloba L, renowned for its anticancer and neuroprotective properties, remains unexplored concerning its impact on platelet activation, particularly in humans. In this investigation, we delved into the intricate mechanisms through which GK influences human platelets. At low concentrations (0.5-1 µM), GK exhibited robust inhibition of collagen and arachidonic acid (AA)-induced platelet aggregation. Intriguingly, thrombin and U46619 remained impervious to GK's influence. GK's modulatory effect extended to ATP release, P-selectin expression, intracellular calcium ([Ca2+ ]i) levels and thromboxane A2 formation. It significantly curtailed the activation of various signaling cascades, encompassing phospholipase Cγ2 (PLCγ2)/protein kinase C (PKC), phosphoinositide 3-kinase/Akt/glycogen synthase kinase-3ß and mitogen-activated protein kinases. GK's antiplatelet effect was not reversed by SQ22536 (an adenylate cyclase inhibitor) or ODQ (a guanylate cyclase inhibitor), and GK had no effect on the phosphorylation of vasodilator-stimulated phosphoproteinSer157 or Ser239 . Moreover, neither cyclic AMP nor cyclic GMP levels were significantly increased after GK treatment. In mouse studies, GK notably extended occlusion time in mesenteric vessels, while sparing bleeding time. In conclusion, GK's profound impact on platelet activation, achieved through inhibiting PLCγ2-PKC cascade, culminates in the suppression of downstream signaling and, ultimately, the inhibition of platelet aggregation. These findings underscore the promising therapeutic potential of GK in the CVDs.


Assuntos
Biflavonoides , Nucleotídeos Cíclicos , Fosfolipases , Humanos , Animais , Camundongos , Nucleotídeos Cíclicos/metabolismo , Nucleotídeos Cíclicos/farmacologia , Fosfolipase C gama/metabolismo , Ácido Araquidônico/farmacologia , Ácido Araquidônico/metabolismo , Fosfolipases/metabolismo , Fosfolipases/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Ativação Plaquetária , Plaquetas/metabolismo , Agregação Plaquetária , Proteína Quinase C/metabolismo , Fosforilação , Colágeno/metabolismo
4.
Transl Res ; 261: 57-68, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37419278

RESUMO

Stress-induced hyperglycemia (SIH) is associated with poor functional recovery and high mortality in patients with acute ischemic stroke (AIS). However, intensive controlling of blood glucose by using insulin was not beneficial in patients with AIS and acute hyperglycemia. This study investigated the therapeutic effects of the overexpression of glyoxalase I (GLO1), a detoxifying enzyme of glycotoxins, on acute hyperglycemia-aggravated ischemic brain injury.  In the present study, adeno-associated viral (AAV)-mediated GLO1 overexpression reduced infarct volume and edema level but did not improve neurofunctional recovery in the mice with middle cerebral artery occlusion (MCAO). AAV-GLO1 infection significantly enhanced neurofunctional recovery in the MCAO mice with acute hyperglycemia but not in the mice with normoglycemia. Methylglyoxal (MG)-modified proteins expression significantly increased in the ipsilateral cortex of the MCAO mice with acute hyperglycemia. AAV-GLO1 infection attenuated the induction of MG-modified proteins, ER stress formation, and caspase 3/7 activation in MG-treated Neuro-2A cells, and reductions in synaptic plasticity and microglial activation were mitigated in the injured cortex of the MCAO mice with acute hyperglycemia. Treatment with ketotifen, a potent GLO1 stimulator, after surgery, alleviated neurofunctional deficits and ischemic brain damage in the MCAO mice with acute hyperglycemia.  Altogether, our data substantiate that, in ischemic brain injury, GLO1 overexpression can alleviate pathologic alterations caused by acute hyperglycemia. Upregulation of GLO1 may be a therapeutic strategy for alleviating SIH-aggravated poor functional outcomes in patients with AIS.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Hiperglicemia , AVC Isquêmico , Lactoilglutationa Liase , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , AVC Isquêmico/complicações , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Glicemia , Infarto da Artéria Cerebral Média/complicações , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia
5.
Int J Biol Sci ; 19(9): 2835-2847, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324944

RESUMO

Senolytic treatment has potential therapeutic efficacy for acute ischemic stroke (AIS). However, the systemic treatment of senolytics may produce off-target side effects and a toxic profile, which affect analysis of the role of acute senescence of neuronal cells in pathogenesis of AIS. We constructed a novel lenti-INK-ATTAC viral vector to introduce INK-ATTAC genes to the ipsilateral brain and locally eliminate senescent brain cells by administering AP20187 to activate caspase-8 apoptotic cascade. In this study, we have found that acute senescence is triggered by middle cerebral artery occlusion (MCAO) surgery, particularly in astrocytes and cerebral endothelial cells (CECs). The upregulation of p16INK4a and senescence-associated secretory phenotype (SASP) factors including matrix metalloproteinase-3, interleukin-1 alpha and -6 were observed in oxygen-glucose deprivation-treated astrocytes and CECs. The systemic administration of a senolytic, ABT-263, prevented the impairment of brain activity from hypoxic brain injury in mice, and significantly improved the neurological severity score, rotarod performance, locomotor activity, and weight loss. The treatment of ABT-263 reduced senescence of astrocytes and CECs in MCAO mice. Furthermore, the localized removal of senescent cells in the injured brain through the stereotaxical injection of lenti-INK-ATTAC viruses generates neuroprotective effects, protecting against acute ischemic brain injury in mice. The content of SASP factors and mRNA level of p16INK4a in the brain tissue of MCAO mice were significantly reduced by the infection of lenti-INK-ATTAC viruses. These results indicate that local clearance of senescent brain cells is a potential therapy on AIS, and demonstrate the correlation between neuronal senescence and pathogenesis of AIS.


Assuntos
Lesões Encefálicas , AVC Isquêmico , Camundongos , Animais , Senescência Celular/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Células Endoteliais
6.
Life Sci ; 318: 121477, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36796718

RESUMO

Renocardiac syndromes are a critical concern among patients with chronic kidney disease (CKD). High level of indoxyl sulfate (IS), a protein-bound uremic toxin, in plasma is known to promote the pathogenesis of cardiovascular diseases by impairing endothelial function. However, the therapeutic effects of the adsorbent of indole, a precursor of IS, on renocardiac syndromes is still debated. Therefore, novel therapeutic approaches should be developed to treat IS-associated endothelial dysfunction. In the present study, we have found that cinchonidine, a major Cinchona alkaloid, exhibited superior cell-protective effects among the 131 test compounds in IS-stimulated human umbilical vein endothelial cells (HUVECs). IS-induced cell death, cellular senescence, and impairment of tube formation in HUVECs were substantially reversed after treatment with cinchonidine. Despite the cinchonidine did not alter reactive oxygen species formation, cellular uptake of IS and OAT3 activity, RNA-Seq analysis showed that the cinchonidine treatment downregulated p53-modulated gene expression and substantially reversed IS-caused G0/G1 cell cycle arrest. Although the mRNA levels of p53 were not considerably downregulated by cinchonidine in IS-treated HUVECs, the treatment of cinchonidine promoted the degradation of p53 and the cytoplasmic-nuclear shuttling of MDM2. Cinchonidine exhibited cell-protective effects against the IS-induced cell death, cellular senescence, and impairment of vasculogenic activity in HUVECs through the downregulation of p53 signaling pathway. Collectively, cinchonidine may be a potential cell-protective agent to rescue IS-induced endothelial cell damage.


Assuntos
Síndrome Cardiorrenal , Alcaloides de Cinchona , Humanos , Síndrome Cardiorrenal/metabolismo , Alcaloides de Cinchona/metabolismo , Alcaloides de Cinchona/farmacologia , Regulação para Baixo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Indicã/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
7.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232674

RESUMO

Platelets are crucial for hemostasis and arterial thrombosis, which may lead to severe cardiovascular diseases (CVDs). Thus, therapeutic agents must be developed to prevent pathological platelet activation. Glabridin, a major bioalkaloid extracted from licorice root, improves metabolic abnormalities (i.e., obesity and diabetes) and protects against CVDs and neuronal disorders. To the best of our knowledge, no studies have focused on glabridin's effects on platelet activation. Therefore, we investigated these effects in humans and mice. Glabridin exhibited the highest inhibitory effects on collagen-stimulated platelet aggregation and moderate effects on arachidonic-acid-stimulated activation; however, no effects were observed for any other agonists (e.g., thrombin or U46619). Glabridin evidently reduced P-selectin expression, ATP release, and intracellular Ca2+ ([Ca2+]i) mobilization and thromboxane A2 formation; it further reduced the activation of phospholipase C (PLC)γ2/protein kinase C (PKC), phosphoinositide 3-kinase (PI3K)/Akt/glycogen synthase kinase-3ß (GSK3ß), mitogen-activated protein kinase (MAPK), and NF-κB. In mice, glabridin reduced the mortality rate caused by acute pulmonary thromboembolism without altering bleeding time. Thus, glabridin effectively inhibits the PLCγ2/PKC cascade and prevents the activation of the PI3K/Akt/GSK3ß and MAPK pathways; this leads to a reduction in [Ca2+]i mobilization, which eventually inhibits platelet aggregation. Therefore, glabridin may be a promising therapeutic agent for thromboembolic disorders.


Assuntos
Glycyrrhiza , Selectina-P , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Plaquetas/metabolismo , Colágeno/metabolismo , Flavonoides/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Isoflavonas , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Selectina-P/metabolismo , Fenóis , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipase C gama/metabolismo , Fosforilação , Ativação Plaquetária , Agregação Plaquetária , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trombina/metabolismo , Tromboxanos/metabolismo
8.
Molecules ; 27(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014382

RESUMO

Inflammation is a major root of several diseases such as allergy, cancer, Alzheimer's, and several others, and the present state of existing drugs provoked researchers to search for new treatment strategies. Plants are regarded to be unique sources of active compounds holding pharmacological properties, and they offer novel designs in the development of therapeutic agents. Therefore, this study aimed to explore the anti-inflammatory mechanism of esculetin in lipoteichoic acid (LTA)-induced macrophage cells (RAW 264.7). The relative expression of inducible nitric oxide synthase (iNOS), nitric oxide (NO) production and COX-2 expression were intensified in LTA-induced RAW cells. The phosphorylation status of mitogen-activated protein kinases (extracellular signal-regulated kinase (ERK)1/2, p38 MAPK, and c-Jun N-terminal kinase (JNK)) and nuclear factor kappa B (NF-κB) p65 were detected by using Western blot assay. The nuclear translocation of p65 was assessed by confocal microscopic image analysis. Esculetin significantly and concentration-dependently inhibited LTA-induced NO production and iNOS expression, but not COX-2 expression, in RAW cells. Esculetin was not effective in LTA-induced MAPK molecules (ERK, p38 and JNK). However, esculetin recovered LTA-induced IκBα degradation and NF-κB p65 phosphorylation. Moreover, esculetin at a higher concentration of 20 µM evidently inhibited the nuclear translocation of NF-κB p65. At the same high concentration, esculetin augmented Nrf2 expression and decreased DPPH radical generation in RAW 264.7 cells. This study exhibits the value of esculetin for the treatment of LTA-induced inflammation by targeting NF-κB signaling pathways via its antioxidant properties.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B , Animais , Ciclo-Oxigenase 2/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais
9.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887391

RESUMO

Yohimbine (YOH) has antiproliferative effects against breast cancer and pancreatic cancer; however, its effects on vascular proliferative diseases such as atherosclerosis remain unknown. Accordingly, we investigated the inhibitory mechanisms of YOH in vascular smooth muscle cells (VSMCs) stimulated by platelet-derived growth factor (PDGF)-BB, a major mitogenic factor in vascular diseases. YOH (5-20 µM) suppressed PDGF-BB-stimulated a mouse VSMC line (MOVAS-1 cell) proliferation without inducing cytotoxicity. YOH also exhibited antimigratory effects and downregulated matrix metalloproteinase-2 and -9 expression in PDGF-BB-stimulated MOVAS-1 cells. It also promoted cell cycle arrest in the initial gap/first gap phase by upregulating p27Kip1 and p53 expression and reducing cyclin-dependent kinase 2 and proliferating cell nuclear antigen expression. We noted phospholipase C-γ1 (PLCγ1) but not ERK1/2, AKT, or p38 kinase phosphorylation attenuation in YOH-modulated PDGF-BB-propagated signaling pathways in the MOVAS-1 cells. Furthermore, YOH still inhibited PDGF-BB-induced cell proliferation and PLCγ1 phosphorylation in MOVAS-1 cells with α2B-adrenergic receptor knockdown. YOH (5 and 10 mg/kg) substantially suppressed neointimal hyperplasia in mice subjected to CCA ligation for 21 days. Overall, our results reveal that YOH attenuates PDGF-BB-stimulated VSMC proliferation and migration by downregulating a α2B-adrenergic receptor-independent PLCγ1 pathway and reduces neointimal formation in vivo. Therefore, YOH has potential for repurposing for treating atherosclerosis and other vascular proliferative diseases.


Assuntos
Aterosclerose , Músculo Liso Vascular , Animais , Aterosclerose/metabolismo , Becaplermina/metabolismo , Becaplermina/farmacologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Receptores Adrenérgicos/metabolismo , Transdução de Sinais , Ioimbina/farmacologia
10.
Int J Mol Sci ; 23(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35682568

RESUMO

Lipoteichoic acid (LTA) is a key cell wall component and virulence factor of Gram-positive bacteria. LTA contributes a major role in infection and it mediates inflammatory responses in the host. Rutaecarpine, an indolopyridoquinazolinone alkaloid isolated from Evodia rutaecarpa, has shown a variety of fascinating biological properties such as anti-thrombotic, anticancer, anti-obesity and thermoregulatory, vasorelaxing activity. It has also potent effects on the cardiovascular and endocrine systems. Herein, we investigated rutaecarpine's (Rut) anti-inflammatory effects in LTA-stimulated RAW macrophage cells. The Western blot and spectrophotometric results revealed that Rut inhibited the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and interleukin (IL)-1ß in the LTA-induced macrophage cells. Successively, our mechanistic studies publicized that Rut inhibited LTA-induced phosphorylation of mitogen-activated protein kinase (MAPK) including the extracellular signal-regulated kinase (ERK), and p38, but not c-Jun NH2-terminal kinase (JNK). In addition, the respective Western blot and confocal image analyses exhibited that Rut reserved nuclear transcription factor kappa-B (NF-κB) by hindering inhibitor of nuclear factor κB-α (IκBα) and NF-κB p65 phosphorylation and p65 nuclear translocation. These results indicate that Rut exhibits its anti-inflammatory effects mainly through attenuating NF-κB and ERK/p38 signaling pathways. Overall, this result suggests that Rut could be a potential therapeutic agent for the treatment of Gram-positive bacteria induced inflammatory diseases.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , NF-kappa B , Animais , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Alcaloides Indólicos/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Quinazolinas , Células RAW 264.7 , Ácidos Teicoicos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Molecules ; 27(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35056795

RESUMO

Platelets play a critical role in arterial thrombosis. Rutaecarpine (RUT) was purified from Tetradium ruticarpum, a well-known Chinese medicine. This study examined the relative activity of RUT with NF-κB inhibitors in human platelets. BAY11-7082 (an inhibitor of IκB kinase [IKK]), Ro106-9920 (an inhibitor of proteasomes), and RUT concentration-dependently (1-6 µM) inhibited platelet aggregation and P-selectin expression. RUT was found to have a similar effect to that of BAY11-7082; however, it exhibits more effectiveness than Ro106-9920. RUT suppresses the NF-κB pathway as it inhibits IKK, IκBα, and p65 phosphorylation and reverses IκBα degradation in activated platelets. This study also investigated the role of p38 and NF-κB in cell signaling events and found that SB203580 (an inhibitor of p38) markedly reduced p38, IKK, and p65 phosphorylation and reversed IκBα degradation as well as p65 activation in a confocal microscope, whereas BAY11-7082 had no effects in p38 phosphorylation. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay shows that RUT and BAY11-7082 did not exhibit free radical scavenging activity. In the in vivo study, compared with BAY11-7082, RUT more effectively reduced mortality in adenosine diphosphate (ADP)-induced acute pulmonary thromboembolism without affecting the bleeding time. In conclusion, a distinctive pathway of p38-mediated NF-κB activation may involve RUT-mediated antiplatelet activation, and RUT could act as a strong prophylactic or therapeutic drug for cardiovascular diseases.


Assuntos
Fibrinolíticos/farmacologia , Alcaloides Indólicos/farmacologia , NF-kappa B/metabolismo , Nitrilas/farmacologia , Quinazolinas/farmacologia , Sulfonas/farmacologia , Trombose/tratamento farmacológico , Trombose/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Modelos Animais de Doenças , Fibrinolíticos/uso terapêutico , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/uso terapêutico , Radicais Livres/antagonistas & inibidores , Humanos , Quinase I-kappa B/antagonistas & inibidores , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Alcaloides Indólicos/uso terapêutico , Masculino , Camundongos Endogâmicos ICR , NF-kappa B/antagonistas & inibidores , Nitrilas/uso terapêutico , Selectina-P/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Embolia Pulmonar/tratamento farmacológico , Embolia Pulmonar/metabolismo , Piridinas/farmacologia , Piridinas/uso terapêutico , Quinazolinas/uso terapêutico , Sulfonas/uso terapêutico , Fator de Transcrição RelA/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-34824589

RESUMO

OBJECTIVE: Oxidative stress-mediated inflammatory events involve in the progress of several diseases such as asthma, cancers, and multiple sclerosis. Auraptene (AU), a natural prenyloxycoumarin, possesses numerous pharmacological activities. Here, the anti-inflammatory effects of AU were investigated in lipoteichoic acid- (LTA-) induced macrophage cells (RAW 264.7). METHODS: The expression of cyclooxygenase (COX-2), tumor necrosis factor (TNF-α), interleukin-1ß (IL-1ß), and inducible nitric oxide synthase (iNOS) and the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, c-Jun N-terminal kinase (JNK), heme oxygenase (HO-1), p65, and IκBα were all identified by western blotting assay. The level of nitric oxide (NO) was measured by spectrometer analysis. The nuclear translocation of p65 nuclear factor kappa B (NF-κB) was assessed by the confocal microscopic staining method. Native polyacrylamide gel electrophoresis was performed to perceive the activity of antioxidant enzyme catalase (CAT). RESULTS: AU expressively reduced NO production and COX-2, TNF-α, IL-1 ß, and iNOS expression in LTA-stimulated cells. AU at higher concentration (10 µM) inhibited ERK and JNK, but not p38 phosphorylation induced by LTA. Moreover, AU blocked IκB and p65 phosphorylation, and p65 nuclear translocation. However, AU pretreatment was not effective on antioxidant HO-1 expression, CAT activity, and reduced glutathione (GSH, a nonenzymatic antioxidant), in LTA-induced RAW 264.7 cells. CONCLUSION: The findings of this study advocate that AU shows anti-inflammatory effects via reducing NF-κB/MAPKs signaling pathways.

13.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681769

RESUMO

The role of activated platelets in acute and chronic cardiovascular diseases (CVDs) is well established. Therefore, antiplatelet drugs significantly reduce the risk of severe CVDs. Evodia rutaecarpa (Wu-Chu-Yu) is a well-known Chinese medicine, and rutaecarpine (Rut) is a main bioactive component with substantial beneficial properties including vasodilation. To address a research gap, we investigated the inhibitory mechanisms of Rut in washed human platelets and experimental mice. At low concentrations (1-5 µM), Rut strongly inhibited collagen-induced platelet aggregation, whereas it exerted only a slight or no effect on platelets stimulated with other agonists (e.g., thrombin). Rut markedly inhibited P-selectin expression; adenosine triphosphate release; [Ca2+]i mobilization; hydroxyl radical formation; and phospholipase C (PLC)γ2/protein kinase C (PKC), mitogen-activated protein kinase, and phosphoinositide 3-kinase (PI3K)/Akt/glycogen synthase kinase-3ß (GSK3ß) phosphorylation stimulated by collagen. SQ22536 (an adenylate cyclase inhibitor) or ODQ (a guanylate cyclase inhibitor) did not reverse Rut-mediated antiplatelet aggregation. Rut was not directly responding to vasodilator-stimulated phosphoprotein phosphorylation. Rut significantly increased the occlusion time of fluorescence irradiated thrombotic platelet plug formation. The findings demonstrated that Rut exerts a strong effect against platelet activation through the PLCγ2/PKC and PI3K/Akt/GSK3ß pathways. Thus, Rut can be a potential therapeutic agent for thromboembolic disorders.


Assuntos
Alcaloides Indólicos/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Quinazolinas/farmacologia , Trombose/prevenção & controle , Alcaloides/química , Alcaloides/farmacologia , Animais , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Evodia/química , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos ICR , Proteínas dos Microfilamentos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/isolamento & purificação , Quinazolinas/uso terapêutico , Quinolinas/química , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Trombose/metabolismo , Trombose/patologia
14.
Molecules ; 26(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34500771

RESUMO

Vincristine is a clinically used antimicrotubule drug for treating patients with lymphoma. Due to its property of increasing platelet counts, vincristine is also used to treat patients with immune thrombocytopenia. Moreover, antiplatelet agents were reported to be beneficial in thrombotic thrombocytopenic purpura (TTP). Therefore, we investigated the detailed mechanisms underlying the antiplatelet effect of vincristine. Our results revealed that vincristine inhibited platelet aggregation induced by collagen, but not by thrombin, arachidonic acid, and the thromboxane A2 analog U46619, suggesting that vincristine exerts higher inhibitory effects on collagen-mediated platelet aggregation. Vincristine also reduced collagen-mediated platelet granule release and calcium mobilization. In addition, vincristine inhibited glycoprotein VI (GPVI) signaling, including Syk, phospholipase Cγ2, protein kinase C, Akt, and mitogen-activated protein kinases. In addition, the in vitro PFA-100 assay revealed that vincristine did not prolong the closure time, and the in vivo study tail bleeding assay showed that vincristine did not prolong the tail bleeding time; both findings suggested that vincristine may not affect normal hemostasis. In conclusion, we demonstrated that vincristine exerts antiplatelet effects at least in part through the suppression of GPVI signaling. Moreover, this property of antiplatelet activity of vincristine may provide additional benefits in the treatment of TTP.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Plaquetas/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Trombocitopenia/tratamento farmacológico , Vincristina/farmacologia , Antineoplásicos Fitogênicos/química , Plaquetas/imunologia , Colágeno/antagonistas & inibidores , Colágeno/farmacologia , Humanos , Conformação Molecular , Neoplasias/imunologia , Agregação Plaquetária/efeitos dos fármacos , Trombocitopenia/imunologia , Vincristina/química
15.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807403

RESUMO

Platelets play a crucial role in the physiology of primary hemostasis and pathological processes such as arterial thrombosis; thus, developing a therapeutic target that prevents platelet activation can reduce arterial thrombosis. Pterostilbene (PTE) has remarkable pharmacological activities, including anticancer and neuroprotection. Few studies have reported the effects of pterostilbene on platelet activation. Thus, we examined the inhibitory mechanisms of pterostilbene in human platelets and its role in vascular thrombosis prevention in mice. At low concentrations (2-8 µM), pterostilbene strongly inhibited collagen-induced platelet aggregation. Furthermore, pterostilbene markedly diminished Lyn, Fyn, and Syk phosphorylation and hydroxyl radical formation stimulated by collagen. Moreover, PTE directly hindered integrin αIIbß3 activation through interfering with PAC-1 binding stimulated by collagen. In addition, pterostilbene affected integrin αIIbß3-mediated outside-in signaling, such as integrin ß3, Src, and FAK phosphorylation, and reduced the number of adherent platelets and the single platelet spreading area on immobilized fibrinogen as well as thrombin-stimulated fibrin clot retraction. Furthermore, pterostilbene substantially prolonged the occlusion time of thrombotic platelet plug formation in mice. This study demonstrated that pterostilbene exhibits a strong activity against platelet activation through the inhibition of integrin αIIbß3-mediated inside-out and outside-in signaling, suggesting that pterostilbene can serve as a therapeutic agent for thromboembolic disorders.


Assuntos
Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/efeitos dos fármacos , Estilbenos/metabolismo , Animais , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Retração do Coágulo/efeitos dos fármacos , Colágeno , Fibrinogênio/metabolismo , Hemostasia/efeitos dos fármacos , Humanos , Integrina alfa2/efeitos dos fármacos , Integrina alfa2/metabolismo , Integrina beta3/efeitos dos fármacos , Integrina beta3/metabolismo , Integrinas/efeitos dos fármacos , Integrinas/metabolismo , Camundongos , Selectina-P/metabolismo , Fosforilação , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia , Trombose/metabolismo
16.
J Agric Food Chem ; 69(16): 4697-4707, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33852294

RESUMO

Platelets play a crucial role in cardiovascular disorders (CVDs); thus, development of a therapeutic target that prevents platelet activation reduces CVDs. Pterostilbene (PTE) has several remarkable pharmacological activities, including anticancer and neuroprotection. Herein, we examined the inhibitory mechanisms of PTE in human platelets and its role in the prevention of vascular thrombosis in mice. At very low concentrations (1-5 µmol/L), PTE strongly inhibited collagen-induced platelet aggregation, but it did not have significant effects against thrombin and 9,11-dideoxy-11α,9α-epoxymethanoprostaglandin (U46619). PTE markedly reduced P-selectin expression on isolated α-granules by a novel microchip. Moreover, PTE inhibited adenosine triphosphate (ATP) release, intracellular ([Ca2+]i) mobilization (resting, 216.6 ± 14.0 nmol/L; collagen-activated platelets, 396.5 ± 25.7 nmol/L; 2.5 µmol/L PTE, 259.4 ± 8.8 nmol/L; 5 µmol/L PTE, 231.8 ± 9.7 nmol/L), phospholipase C (PLC)γ2/protein kinase C (PKC), Akt, and mitogen-activated protein kinase (MAPK) phosphorylation. Neither 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22536) nor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) reversed platelet aggregation inhibited by PTE. PTE did not affect vasodilator-stimulated phosphoprotein phosphorylation. In mice, PTE obviously reduced the mortality (from 100 to 37.5%) associated with acute pulmonary thromboembolism without increasing the bleeding time. Thus, PTE could be used to prevent CVDs.


Assuntos
Ativação Plaquetária , Trombose , Animais , Plaquetas , Humanos , Camundongos , Fosforilação , Agregação Plaquetária , Resveratrol , Estilbenos , Trombose/prevenção & controle
17.
Antioxidants (Basel) ; 10(4)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918237

RESUMO

Columbianadin (CBN), a natural coumarin isolated from Angelica decursiva, is reported to have numerous biological activities, including anticancer and platelet aggregation inhibiting properties. Here, we investigated CBN's anti-inflammatory effect in lipopolysaccharide (LPS)-stimulated RAW 264.7 cell activation and deciphered the signaling process, which could be targeted by CBN as part of the mechanisms. Using a mouse model of LPS-induced acute liver inflammation, the CBN effects were examined by distinct histologic methods using trichrome, reticulin, and Weigert's resorcin fuchsin staining. The result showed that CBN decreased LPS-induced expressions of TNF-α, IL-1ß, and iNOS and NO production in RAW 264.7 cells and mouse liver. CBN inhibited LPS-induced ERK and JNK phosphorylation, increased IκBα levels, and inhibited NF-κB p65 phosphorylation and its nuclear translocation. Application of inhibitors for ERK (PD98059) and JNK (SP600125) abolished the LPS-induced effect on NF-κB p65 phosphorylation, which indicated that ERK and JNK signaling pathways were involved in CBN-mediated inhibition of NF-κB activation. Treatment with CBN decreased hydroxyl radical (•OH) generation and increased HO-1 expression in RAW 264.7 cells. Furthermore, LPS-induced liver injury, as indicated by elevated serum levels of liver marker enzymes (aspartate aminotransferase (AST) and alanine aminotransferase (ALT)) and histopathological alterations, were reversed by CBN. This work demonstrates the utility of CBN against LPS-induced inflammation, liver injury, and oxidative stress by targeting JNK/ERK and NF-κB signaling pathways.

18.
Autophagy ; 17(12): 4141-4158, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33749503

RESUMO

Basal macroautophagy/autophagy has recently been found in anucleate platelets. Platelet autophagy is involved in platelet activation and thrombus formation. However, the mechanism underlying autophagy in anucleate platelets require further clarification. Our data revealed that LC3-II formation and SQSTM1/p62 degradation were noted in H2O2-activated human platelets, which could be blocked by 3-methyladenine and bafilomycin A1, indicating that platelet activation may cause platelet autophagy. AMPK phosphorylation and MTOR dephosphorylation were also detected, and block of AMPK activity by the AMPK inhibitor dorsomorphin reversed SQSTM1 degradation and LC3-II formation. Moreover, autophagosome formation was observed through transmission electron microscopy and deconvolution microscopy. These findings suggest that platelet autophagy was induced partly through the AMPK-MTOR pathway. In addition, increased LC3-II expression occurred only in H2O2-treated Atg5f/f platelets, but not in H2O2-treated atg5-/- platelets, suggesting that platelet autophagy occurs during platelet activation. atg5-/- platelets also exhibited a lower aggregation in response to agonists, and platelet-specific atg5-/- mice exhibited delayed thrombus formation in mesenteric microvessles and decreased mortality rate due to pulmonary thrombosis. Notably, metabolic analysis revealed that sphingolipid metabolism is involved in platelet activation, as evidenced by observed several altered metabolites, which could be reversed by dorsomorphin. Therefore, platelet autophagy and platelet activation are positively correlated, partly through the interconnected network of sphingolipid metabolism. In conclusion, this study for the first time demonstrated that AMPK-MTOR signaling could regulate platelet autophagy. A novel linkage between AMPK-MTOR and sphingolipid metabolism in anucleate platelet autophagy was also identified: platelet autophagy and platelet activation are positively correlated.Abbreviations: 3-MA: 3-methyladenine; A.C.D.: citric acid/sod. citrate/glucose; ADP: adenosine diphosphate; AKT: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ANOVA: analysis of variance; ATG: autophagy-related; B4GALT/LacCS: beta-1,4-galactosyltransferase; Baf-A1: bafilomycin A1; BECN1: beclin 1; BHT: butylate hydrooxytoluene; BSA: bovine serum albumin; DAG: diacylglycerol; ECL: enhanced chemiluminescence; EDTA: ethylenediamine tetraacetic acid; ELISA: enzyme-linked immunosorbent assay; GALC/GCDase: galactosylceramidase; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GBA/GluSDase: glucosylceramidase beta; GPI: glycosylphosphatidylinositol; H2O2: hydrogen peroxide; HMDB: human metabolome database; HRP: horseradish peroxidase; IF: immunofluorescence; IgG: immunoglobulin G; KEGG: Kyoto Encyclopedia of Genes and Genomes; LAMP1: lysosomal associated membrane protein 1; LC-MS/MS: liquid chromatography-tandem mass spectrometry; mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MPV: mean platelet volume; MTOR: mechanistic target of rapamycin kinase; ox-LDL: oxidized low-density lipoprotein; pAb: polyclonal antibody; PC: phosphatidylcholine; PCR: polymerase chain reaction; PI3K: phosphoinositide 3-kinase; PLS-DA: partial least-squares discriminant analysis; PRP: platelet-rich plasma; Q-TOF: quadrupole-time of flight; RBC: red blood cell; ROS: reactive oxygen species; RPS6KB/p70S6K: ribosomal protein S6 kinase B; SDS: sodium dodecyl sulfate; S.E.M.: standard error of the mean; SEM: scanning electron microscopy; SGMS: sphingomyelin synthase; SM: sphingomyelin; SMPD/SMase: sphingomyelin phosphodiesterase; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; UGT8/CGT: UDP glycosyltransferase 8; UGCG/GCS: UDP-glucose ceramide glucosyltransferase; ULK1: unc-51 like autophagy activating kinase 1; UPLC: ultra-performance liquid chromatography; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: phosphatidylinositol-3-phosphate; WBC: white blood cell; WT: wild type.


Assuntos
Autofagia , Trombose , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia/fisiologia , Plaquetas/metabolismo , Cromatografia Líquida , Peróxido de Hidrogênio , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Esfingolipídeos , Serina-Treonina Quinases TOR/metabolismo , Espectrometria de Massas em Tandem
19.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008520

RESUMO

Studies have discovered that different extracts of Evodia rutaecarpa and its phytochemicals show a variety of biological activities associated with inflammation. Although rutaecarpine, an alkaloid isolated from the unripe fruit of E. rutaecarpa, has been exposed to have anti-inflammatory properties, the mechanism of action has not been well studied. Thus, this study investigated the molecular mechanisms of rutaecarpine (RUT) in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. RUT reserved the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF-α), and interleukin (IL)-1ß in the LPS-induced macrophages. RUT showed an inhibitory effect on the mitogen-activated protein kinases (MAPKs), and it also inhibited nuclear transcription factor kappa-B (NF-κB) by hindering IκBα and NF-κB p65 phosphorylation and p65 nuclear translocation. The phospho-PI3K and Akt was concentration-dependently suppressed by RUT. However, RUT not only suggestively reduced the migratory ability of macrophages and their numbers induced by LPS but also inhibited the phospho-Src, and FAK. Taken together, these results indicate that RUT participates a vital role in the inhibition of LPS-induced inflammatory processes in RAW 264.7 macrophages and that the mechanisms involve PI3K/Akt and MAPK-mediated downregulation of NF-κB signaling pathways. Notably, reducing the migration and number of cells induced by LPS via inhibiting of Src/FAK pathway was also included to the anti-inflammatory mechanism of RUT. Therefore, RUT may have potential benefits as a therapeutic agent against chronic inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Quinase 1 de Adesão Focal/metabolismo , Alcaloides Indólicos/farmacologia , Macrófagos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Quinazolinas/farmacologia , Animais , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Inibidor de NF-kappaB alfa/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
J Biomed Sci ; 27(1): 60, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375785

RESUMO

BACKGROUND: Columbianadin (CBN) is one of the main coumarin constituents isolated from Angelica pubescens. The pharmacological value of CBN is well demonstrated, especially in the prevention of several cancers and analgesic activity. A striking therapeutic target for arterial thrombosis is inhibition of platelet activation because platelet activation significantly contributes to these diseases. The current study examined the influence of CBN on human platelet activation in vitro and vascular thrombotic formation in vivo. METHODS: Aggregometry, immunoblotting, immunoprecipitation, confocal microscopic analysis, fibrin clot retraction, and thrombogenic animals were used in this study. RESULTS: CBN markedly inhibited platelet aggregation in washed human platelets stimulated only by collagen, but was not effective in platelets stimulated by other agonists such as thrombin, arachidonic acid, and U46619. CBN evidently inhibited ATP release, intracellular ([Ca2+]i) mobilization, and P-selectin expression. It also inhibited the phosphorylation of phospholipase C (PLC)γ2, protein kinase C (PKC), Akt (protein kinase B), and mitogen-activated protein kinases (MAPKs; extracellular signal-regulated kinase [ERK] 1/2 and c-Jun N-terminal kinase [JNK] 1/2, but not p38 MAPK) in collagen-activated platelets. Neither SQ22536, an adenylate cyclase inhibitor, nor ODQ, a guanylate cyclase inhibitor, reversed the CBN-mediated inhibition of platelet aggregation. CBN had no significant effect in triggering vasodilator-stimulated phosphoprotein phosphorylation. Moreover, it markedly hindered integrin αIIbß3 activation by interfering with the binding of PAC-1; nevertheless, it had no influences on integrin αIIbß3-mediated outside-in signaling such as adhesion number and spreading area of platelets on immobilized fibrinogen as well as thrombin-stimulated fibrin clot retraction. Additionally, CBN did not attenuate FITC-triflavin binding or phosphorylation of proteins, such as integrin ß3, Src, and focal adhesion kinase, in platelets spreading on immobilized fibrinogen. In experimental mice, CBN increased the occlusion time of thrombotic platelet plug formation. CONCLUSION: This study demonstrated that CBN exhibits an exceptional activity against platelet activation through inhibition of the PLCγ2-PKC cascade, subsequently suppressing the activation of Akt and ERKs/JNKs and influencing platelet aggregation. Consequently, this work provides solid evidence and considers that CBN has the potential to serve as a therapeutic agent for the treatment of thromboembolic disorders.


Assuntos
Cumarínicos/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Trombose/tratamento farmacológico , Animais , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA