Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542091

RESUMO

The troponin complex-consisting of three subunits: troponin C (TnC), cardiac troponin I (cTnI) and cardiac troponin T (cTnT)-plays a key role in the regulation of myocardial contraction. Troponins are preferentially localized in the cytoplasm and bind to myofibrils. However, numerous, albeit scattered, studies have shown the presence of troponins in the nuclei of muscle cells. There is increasing evidence that the nuclear localization of troponins may be functionally important, making troponins an important nuclear player in the pathogenesis of various diseases including cancer and myopathies. Further studies in this area could potentially lead to the development of treatments for certain pathologies. In this review, we collected and discussed recent data on the properties of non-canonically localized cardiac troponins, the molecular mechanisms leading to this non-canonical localization, and the possible functions or pathological effects of these non-canonically localized troponins.


Assuntos
Doenças Musculares , Troponina T , Humanos , Troponina I , Miofibrilas , Biomarcadores
2.
J Med Virol ; 96(2): e29423, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38285479

RESUMO

Despite the success of combination antiretroviral therapy, people living with human immunodeficiency virus (HIV) still have an increased risk of Epstein-Barr virus (EBV)-associated B cell malignancies. In the HIV setting, B cell physiology is altered by coexistence with HIV-infected cells and the chronic action of secreted viral proteins, for example, HIV-1 Tat that, once released, efficiently penetrates noninfected cells. We modeled the chronic action of HIV-1 Tat on B cells by ectopically expressing Tat or TatC22G mutant in two lymphoblastoid B cell lines. The RNA-sequencing analysis revealed that Tat deregulated the expression of hundreds of genes in B cells, including the downregulation of a subset of major histocompatibility complex (MHC) class II-related genes. Tat-induced downregulation of HLA-DRB1 and HLA-DRB5 genes led to a decrease in HLA-DR surface expression; this effect was reproduced by coculturing B cells with Tat-expressing T cells. Chronic Tat presence decreased the NF-ᴋB pathway activity in B cells; this downregulated NF-ᴋB-dependent transcriptional targets, including MHC class II genes. Notably, HLA-DRB1 and surface HLA-DR expression was also decreased in B cells from people with HIV. Tat-induced HLA-DR downregulation in B cells impaired EBV-specific CD4+ T cell response, which contributed to the escape from immune surveillance and could eventually promote B cell lymphomagenesis in people with HIV.


Assuntos
Linfócitos B , Infecções por Vírus Epstein-Barr , Infecções por HIV , Linfoma , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Regulação para Baixo , Herpesvirus Humano 4/genética , Infecções por HIV/genética , HIV-1/genética , Cadeias HLA-DRB1 , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
3.
Ultrastruct Pathol ; 47(5): 382-387, 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37306223

RESUMO

Recent studies indicate that cilia impairment, accompanied by the axonema loss and the basal body misorientation, is a common pathological feature of SARS-CoV-2-infected bronchial epithelial cells. However, these data were obtained using either cultured cells, or animal models, while in human postmortem material, cilia impairment has not been described yet. Here, we present direct observation of cilia impairment in SARS-CoV-2-infected bronchial epithelial cells using transmission electron microscopy of the autopsy material. We were able to observe only single infected cells with cilia impairment in one of twelve examined specimens, while the large number of desquamated bronchial epithelial cells with undisturbed ciliary layer was visible in the bronchial lumens. Thus, it seems that in the lungs of infected patients, the majority of bronchial cells do not die as a direct result of infection, which may explain the rarity of this finding in the autopsy material.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Cílios , Autopsia , COVID-19/patologia , Células Epiteliais
4.
PeerJ ; 10: e13986, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275462

RESUMO

An increased frequency of B-cell lymphomas is observed in human immunodeficiency virus-1 (HIV-1)-infected patients, although HIV-1 does not infect B cells. Development of B-cell lymphomas may be potentially due to the action of the HIV-1 Tat protein, which is actively released from HIV-1-infected cells, on uninfected B cells. The exact mechanism of Tat-induced B-cell lymphomagenesis has not yet been precisely identified. Here, we ectopically expressed either Tat or its TatC22G mutant devoid of transactivation activity in the RPMI 8866 lymphoblastoid B cell line and performed a genome-wide analysis of host gene expression. Stable expression of both Tat and TatC22G led to substantial modifications of the host transcriptome, including pronounced changes in antiviral response and cell cycle pathways. We did not find any strong action of Tat on cell proliferation, but during prolonged culturing, Tat-expressing cells were displaced by non-expressing cells, indicating that Tat expression slightly inhibited cell growth. We also found an increased frequency of chromosome aberrations in cells expressing Tat. Thus, Tat can modify gene expression in cultured B cells, leading to subtle modifications in cellular growth and chromosome instability, which could promote lymphomagenesis over time.


Assuntos
HIV-1 , Linfoma de Células B , Humanos , HIV-1/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Expressão Ectópica do Gene , Linfoma de Células B/genética , Expressão Gênica
5.
Biochim Biophys Acta Mol Cell Res ; 1867(2): 118601, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31733262

RESUMO

The nuclear accumulation of proteins may depend on the presence of short targeting sequences, which are known as nuclear localization signals (NLSs). Here, we found that NLSs are predicted in some cytosolic proteins and examined the hypothesis that these NLSs may be functional under certain conditions. As a model, human cardiac troponin I (hcTnI) was used. After expression in cultured non-muscle or undifferentiated muscle cells, hcTnI accumulated inside nuclei. Several NLSs were predicted and confirmed by site-directed mutagenesis in hcTnI. Nuclear import occurred via the classical karyopherin-α/ß nuclear import pathway. However, hcTnI expressed in cultured myoblasts redistributed from the nucleus to the cytoplasm, where it was integrated into forming myofibrils after the induction of muscle differentiation. It appears that the dynamic retention of proteins inside cytoplasmic structures can lead to switching between nuclear and cytoplasmic localization.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Troponina I/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Humanos , Microscopia Confocal , Mutagênese Sítio-Dirigida , Mioblastos/citologia , Mioblastos/metabolismo , Sinais de Localização Nuclear/metabolismo , Alinhamento de Sequência , Troponina I/química , Troponina I/genética , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo
6.
Front Pharmacol ; 10: 436, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068822

RESUMO

Microtubule (MT) inhibitors show anti-cancer activity in a wide range of tumors in vitro and demonstrate high clinical efficacy. To date they are routinely included into many chemotherapeutic regimens. While the mechanisms of MT inhibitors' interactions with tubulin have been well-established, the relationship between their concentration and effect on neoplastic cells is not completely understood. The common notion is that tumor cells are most vulnerable during division and all MT inhibitors block them in mitosis and induce mitotic checkpoint-associated cell death. At the same time multiple evidence of more subtle effects of lower doses of MT inhibitors on cell physiology exist. The extent of efficacy of the low-dose MT inhibitor treatment and the mechanisms of resulting cell death currently present a critical issue in oncology. The prospect of MT inhibitor dose reduction is promising as protocols at higher concentration have multiple side effects. We assessed cell cycle changes and cell death induced by MT inhibitors (paclitaxel, nocodazole, and vinorelbine) on human lymphoid B-cell lines in a broad concentration range. All inhibitors had similar accumulation effects and demonstrated "trigger" concentrations that induce cell accumulation in G2/M phase. Concentrations slightly below the "trigger" promoted cell accumulation in sub-G1 phase. Multi-label analysis of live cells showed that the sub-G1 population is heterogeneous and may include cells that are still viable after 24 h of treatment. Effects observed were similar for cells expressing Tat-protein. Thus cell cycle progression and cell death are differentially affected by high and low MT inhibitor concentrations.

7.
ACS Biomater Sci Eng ; 5(11): 6063-6071, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33405660

RESUMO

Nanocontainers based on solid materials have great potential for drug delivery applications. However, since nanocontainer-mediated delivery can alter the drug internalization pathways and metabolism, it is important to find out what are the mechanisms of cancer cell death induced by nanocontainers and, moreover, is it possible to regulate them. Here, we report on the detailed investigation of the internalization kinetics and intracellular spatial distribution of porous silicon nanoparticles (PSi NPs) loaded with doxorubicin (DOX) and response of cancer cells to treatment with DOX-PSi NPs as well as studies of nanocontainer biodegradation by applying various microscopy methods, Raman microspectroscopy and biological experiments with cancer cells of different etiology. The obtained results revealed the absence of toxicity of unloaded PSi NPs to cancer cells up to a concentration of 700 µg/mL during the prolonged incubation time. Thus, given the fact that the nanocontainers themselves are not toxic, it is easy to adjust the dose of the drug that they deliver to the cells. It is shown, that the treatment with DOX-loaded PSi NPs more efficiently eliminates cancer cells in comparison with the free DOX. At the same time, the obtained results demonstrate the possibility of regulating the initiation of apoptosis or necrosis in tumor cells after treatment with different concentrations of DOX-PSi NPs, as revealed by the analysis of the caspase-3 processing, the accumulation of sub-G1 cell fraction, and morphological changes determined by electron and light microscopy. The obtained results are important for future applications of porous silicon nanocontainers in drug delivery for apoptotic pathway-targeted cancer therapy.

8.
Cell Biol Int ; 42(11): 1463-1466, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30080298

RESUMO

Fibrillarin is an essential nucleolar protein that catalyzes the 2'-O-methylation of ribosomal RNAs. Recently, experimental data have begun to accumulate that suggest that fibrillarin can influence various cellular processes, development of pathological processes, and even aging. The exact mechanism by which fibrillarin can influence these processes has not been found, but some experimental data indicate that up- or downregulation of fibrillarin can modify the ribosome structure and, thus, causе an alteration in relative efficiency with which various mRNAs are translated. Here, we discuss recent studies on the potential roles of fibrillarin in the regulation of cell proliferation, cancer progression, and aging.


Assuntos
Envelhecimento/metabolismo , Nucléolo Celular/enzimologia , Proteínas Cromossômicas não Histona/metabolismo , Metiltransferases/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Proliferação de Células , Humanos
9.
Redox Biol ; 15: 97-108, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29220699

RESUMO

Human immunodeficiency virus (HIV) infection is associated with B-cell malignancies in patients though HIV-1 is not able to infect B-cells. The rate of B-cell lymphomas in HIV-infected individuals remains high even under the combined antiretroviral therapy (cART) that reconstitutes the immune function. Thus, the contribution of HIV-1 to B-cell oncogenesis remains enigmatic. HIV-1 induces oxidative stress and DNA damage in infected cells via multiple mechanisms, including viral Tat protein. We have detected elevated levels of reactive oxygen species (ROS) and DNA damage in B-cells of HIV-infected individuals. As Tat is present in blood of infected individuals and is able to transduce cells, we hypothesized that it could induce oxidative DNA damage in B-cells promoting genetic instability and malignant transformation. Indeed, incubation of B-cells isolated from healthy donors with purified Tat protein led to oxidative stress, a decrease in the glutathione (GSH) levels, DNA damage and appearance of chromosomal aberrations. The effects of Tat relied on its transcriptional activity and were mediated by NF-κB activation. Tat stimulated oxidative stress in B-cells mostly via mitochondrial ROS production which depended on the reverse electron flow in Complex I of respiratory chain. We propose that Tat-induced oxidative stress, DNA damage and chromosomal aberrations are novel oncogenic factors favoring B-cell lymphomas in HIV-1 infected individuals.


Assuntos
Dano ao DNA/genética , HIV-1/genética , Estresse Oxidativo/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Linfócitos B/patologia , Linfócitos B/virologia , Glutationa/metabolismo , HIV-1/patogenicidade , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , NF-kappa B/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
10.
Front Plant Sci ; 8: 1646, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28993784

RESUMO

The mechanical damage that often precedes the penetration of a leaf by a pathogen promotes the activation of pectin methylesterase (PME); the activation of PME leads to the emission of methanol, resulting in a "priming" effect on intact leaves, which is accompanied by an increased sensitivity to Tobacco mosaic virus (TMV) and resistance to bacteria. In this study, we revealed that mRNA levels of the methanol-inducible gene encoding Nicotiana benthamiana aldose 1-epimerase-like protein (NbAELP) in the leaves of intact plants are very low compared with roots. However, stress and pathogen attack increased the accumulation of the NbAELP mRNA in the leaves. Using transiently transformed plants, we obtained data to support the mechanism underlying AELP/PME-related negative feedback The insertion of the NbAELP promoter sequence (proNbAELP) into the N. benthamiana genome resulted in the co-suppression of the natural NbAELP gene expression, accompanied by a reduction in the NbAELP mRNA content and increased PME synthesis. Knockdown of NbAELP resulted in high activity of PME in the cell wall and a decrease in the leaf glucose level, creating unfavorable conditions for Agrobacterium tumefaciens reproduction in injected leaves. Our results showed that NbAELP is capable of binding the TMV movement protein (MPTMV) in vitro and is likely to affect the cellular nucleocytoplasmic transport, which may explain the sensitivity of NbAELP knockdown plants to TMV. Although NbAELP was primarily detected in the cell wall, the influence of this protein on cellular PME mRNA levels might be associated with reduced transcriptional activity of the PME gene in the nucleus. To confirm this hypothesis, we isolated the N. tabacum PME gene promoter (proNtPME) and showed the inhibition of proNtPME-directed GFP and GUS expression in leaves when co-agroinjected with the NbAELP-encoding plasmid. We hypothesized that plant wounding and/or pathogen attack lead to PME activation and increased methanol emission, followed by increased NbAELP expression, which results in reversion of PME mRNA level and methanol emission to levels found in the intact plant.

11.
J Cell Sci ; 129(24): 4509-4520, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27875271

RESUMO

Nuclear bodies are membraneless organelles that play important roles in genome functioning. A specific type of nuclear bodies known as interphase prenucleolar bodies (iPNBs) are formed in the nucleoplasm after hypotonic stress from partially disassembled nucleoli. iPNBs are then disassembled, and the nucleoli are reformed simultaneously. Here, we show that diffusion of B23 molecules (also known as nucleophosmin, NPM1) from iPNBs, but not fusion of iPNBs with the nucleoli, contributes to the transfer of B23 from iPNBs to the nucleoli. Maturation of pre-ribosomal RNAs (rRNAs) and the subsequent outflow of mature rRNAs from iPNBs led to the disassembly of iPNBs. We found that B23 transfer was dependent on the synthesis of pre-rRNA molecules in nucleoli; these pre-rRNA molecules interacted with B23 and led to its accumulation within nucleoli. The transfer of B23 between iPNBs and nucleoli was accomplished through a nucleoplasmic pool of B23, and increased nucleoplasmic B23 content retarded disassembly, whereas B23 depletion accelerated disassembly. Our results suggest that iPNB disassembly and nucleolus assembly might be coupled through RNA-dependent exchange of nucleolar proteins, creating a highly dynamic system with long-distance correlations between spatially distinct processes.


Assuntos
Corpos de Inclusão Intranuclear/metabolismo , RNA/metabolismo , Trifosfato de Adenosina/metabolismo , Nucléolo Celular/metabolismo , Difusão , Células HeLa , Humanos , Interfase , Nucleofosmina , Processamento Pós-Transcricional do RNA , Estresse Fisiológico
12.
Cell Mol Life Sci ; 73(3): 589-601, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26507246

RESUMO

Human immunodeficiency virus-1 (HIV-1) Tat protein is one of the most important regulatory proteins for viral gene expression in the host cell and can modulate different cellular processes. In addition, Tat is secreted by the infected cell and can be internalized by neighboring cells; therefore, it affects both infected and uninfected cells. Tat can modulate cellular processes by interacting with different cellular structures and signaling pathways. In the nucleus, Tat might be localized either in the nucleoplasm or the nucleolus depending on its concentration. Here we review the distinct functions of Tat in the nucleoplasm and the nucleolus in connection with viral infection and HIV-induced oncogenesis.


Assuntos
Regulação Viral da Expressão Gênica , Produtos do Gene tat do Vírus da Imunodeficiência Humana/fisiologia , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Infecções por HIV/complicações , Humanos , Modelos Moleculares , Membrana Nuclear/metabolismo , Sinais de Localização Nuclear , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química
13.
Virology ; 407(1): 7-13, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20801474

RESUMO

Human epidermal growth factor receptor-2 (HER2/neu) is a target for the humanized monoclonal antibody trastuzumab. Recently, trastuzumab-binding peptides (TBP) of HER2/neu that inhibit proliferation of breast cancer cells were identified. We have now studied conditions of efficient assembly in vivo of Tobacco mosaic virus (TMV)-based particles displaying TBP on its surface. The system is based on an Agrobacterium-mediated co-delivery of binary vectors encoding TMV RNA and coat protein (CP) with TBP in its C-terminal extension into plant leaves. We show how the fusion of amino acid substituted TBP (sTBP) to CP via a flexible peptide linker can improve the manufacturability of recombinant TMV (rTMV). We also reveal that rTMV particles with exposed sTBP retained trastuzumab-binding capacity but lost an anti-HER2/neu immunogenic scaffold function. Mouse antibodies against rTMV did not recognize HER2/neu on surface of human SK-BR-3 cells.


Assuntos
Anticorpos Monoclonais/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/metabolismo , Anticorpos Monoclonais Humanizados , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Vetores Genéticos , Humanos , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Rhizobium/genética , Trastuzumab
14.
Cell Biol Int ; 30(12): 1028-40, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17029868

RESUMO

A novel extraction protocol for cells cultured on coverslips is described. Observations of the extraction process in a perfusion chamber reveal that cells of all mitotic stages are not detached from coverslips during extraction, and all stages can be recognized using phase contrast images. We studied the extracted cell morphology and distribution of a major scaffold component - topoisomerase IIalpha, in extracted metaphase and anaphase cells. An extraction using 2M NaCl leads to destruction of chromosomes at the light microscope level. Immunogold studies demonstrate that the only residual structure observed is an axial chromosome scaffold that contains topoisomerase IIalpha. In contrast, mitotic chromosomes are swelled only partially after an extraction using dextran sulphate and heparin, and it appears that this treatment does not lead to total destruction of loop domains. In this case, the chromosome scaffold and numerous structures resembling small rosettes are revealed inside extracted cells. The rosettes observed condense after addition of Mg2+-ions and do not contain topoisomerase IIalpha suggesting that these structures correspond to intermediates of loop domain compaction. We propose a model of chromosome structure in which the loop domains are condensed into highly regular structures with rosette organization.


Assuntos
Antígenos de Neoplasias/ultraestrutura , Cromossomos/metabolismo , Cromossomos/ultraestrutura , DNA Topoisomerases Tipo II/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Regiões de Interação com a Matriz , Mitose , Animais , Técnicas de Cultura de Células/métodos , Células Cultivadas , Fibroblastos/citologia , Camundongos , Coloração e Rotulagem/métodos
15.
Cancer ; 102(3): 174-85, 2004 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-15211477

RESUMO

BACKGROUND: The genesis of lymphoid neoplasia is accompanied by alterations in cell proliferation control mechanisms. Thus, proliferative indices (PIs) provide valuable prognostic information in this setting. Nonetheless, one shortcoming of PI measurements is that they depend not only on the proliferative activity of the neoplastic cells in a given lesion, but also on the activity of any admixed reactive cells. The current report describes an approach to identifying neoplastic and reactive subpopulations in cytologic preparations and to comparatively characterizing the morphologic features of neoplastic cells and assessing their proliferative activity. METHODS: Reactive and malignant lymph node samples were obtained from 37 patients during surgical biopsy. Giemsa stained touch imprints were used for morphometric and high-resolution videomicroscopic analyses. Immunofluorescence-based detection of pKi-67-positive cells was used in conjunction with morphometric analysis to assess the proliferative activity of tumor cells. RESULTS: Morphometric analysis allowed the selective identification of neoplastic cells in large cell lymphomas (LCLs). The morphologic characteristics of neoplastic cells in primary and secondary LCLs were found to be similar. The PI was highly dependent on the proportion of tumor cells present in the tissue sample analyzed, and in some samples with large proportions of reactive cells, the overall percentage of pKi-67-positive cells was low, but the majority of neoplastic cells nonetheless were positive for pKi-67. Most primary LCLs had very high tumor cell PIs (80-100%), whereas all secondary LCLs had moderate tumor cell PIs. CONCLUSIONS: Neoplastic cell subpopulations in LCLs can be identified on morphometric analysis, which can be performed using touch imprints; this technique allows evaluation of the proliferative activity of tumor cells. The authors propose that the use of tumor cell PIs rather than PIs for overall cell populations will result in more accurate assessment of disease prognosis.


Assuntos
Antígeno Ki-67/metabolismo , Leucemia de Células B/patologia , Linfoma de Células B/patologia , Linfoma Difuso de Grandes Células B/patologia , Biomarcadores Tumorais/análise , Divisão Celular , Humanos , Hiperplasia/patologia , Linfoma de Células B/química , Linfoma Difuso de Grandes Células B/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA