Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Orthop Res ; 41(10): 2250-2260, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37087676

RESUMO

Tendon injuries are common and often treated surgically, however, current tendon repair healing results in poorly organized fibrotic tissue. While certain growth factors have been reported to improve both the strength and organization of the repaired enthesis, their clinical applicability is severely limited due to a lack of appropriate delivery strategies. In this study, we evaluated a recently developed fluorescent probe, Osteoadsorptive Fluorogenic Sentinel-3 that is composed of a bone-targeting bisphosphonate (BP) moiety linked to fluorochrome and quencher molecules joined via a cathepsin K-sensitive peptide sequence. Using a murine Achilles tendon-to-bone repair model, BP-based and/or Ctsk-coupled imaging probes were applied either locally or systemically. Fluorescence imaging was used to quantify the resultant signal in vivo. After tendon-bone repair, animals that received either local or systemic administration of imaging probes demonstrated significantly higher fluorescence signal at the repair site compared to the sham surgery group at all time points (p < 0.001), with signal peaking at 7-10 days after surgery. Our findings demonstrate the feasibility of using a novel BP-based targeting and Ctsk-activated delivery of molecules to the site of tendon-to-bone repair and creates a foundation for further development of this platform as an effective strategy to deliver bioactive molecules to sites of musculoskeletal injury.


Assuntos
Procedimentos de Cirurgia Plástica , Traumatismos dos Tendões , Ratos , Animais , Camundongos , Cicatrização , Ratos Sprague-Dawley , Traumatismos dos Tendões/diagnóstico por imagem , Traumatismos dos Tendões/tratamento farmacológico , Traumatismos dos Tendões/cirurgia , Tendões/cirurgia
2.
J Orthop Res ; 41(6): 1148-1161, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36203346

RESUMO

Regenerative therapies for tendon are falling behind other tissues due to the lack of an appropriate and potent cell therapeutic candidate. This study aimed to induce tenogenesis using stable Scleraxis (Scx) overexpression in combination with uniaxial mechanical stretch of iPSC-derived mesenchymal stromal-like cells (iMSCs). Scx is the single direct molecular regulator of tendon differentiation known to date. Bone marrow-derived (BM-)MSCs were used as reference. Scx overexpression alone resulted in significantly higher upregulation of tenogenic markers in iMSCs compared to BM-MSCs. Mechanoregulation is known to be a central element guiding tendon development and healing. Mechanical stimulation combined with Scx overexpression resulted in morphometric and cytoskeleton-related changes, upregulation of early and late tendon markers, and increased extracellular matrix deposition and alignment, and tenomodulin perinuclear localization in iMSCs. Our findings suggest that these cells can be differentiated into tenocytes and might be a better candidate for tendon cell therapy applications than BM-MSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Diferenciação Celular , Tendões , Matriz Extracelular
3.
Sci Rep ; 12(1): 18701, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333414

RESUMO

Cranial bone loss presents a major clinical challenge and new regenerative approaches to address craniofacial reconstruction are in great demand. Induced pluripotent stem cell (iPSC) differentiation is a powerful tool to generate mesenchymal stromal cells (MSCs). Prior research demonstrated the potential of bone marrow-derived MSCs (BM-MSCs) and iPSC-derived mesenchymal progenitor cells via the neural crest (NCC-MPCs) or mesodermal lineages (iMSCs) to be promising cell source for bone regeneration. Overexpression of human recombinant bone morphogenetic protein (BMP)6 efficiently stimulates bone formation. The study aimed to evaluate the potential of iPSC-derived cells via neural crest or mesoderm overexpressing BMP6 and embedded in 3D printable bio-ink to generate viable bone graft alternatives for cranial reconstruction. Cell viability, osteogenic potential of cells, and bio-ink (Ink-Bone or GelXa) combinations were investigated in vitro using bioluminescent imaging. The osteogenic potential of bio-ink-cell constructs were evaluated in osteogenic media or nucleofected with BMP6 using qRT-PCR and in vitro µCT. For in vivo testing, two 2 mm circular defects were created in the frontal and parietal bones of NOD/SCID mice and treated with Ink-Bone, Ink-Bone + BM-MSC-BMP6, Ink-Bone + iMSC-BMP6, Ink-Bone + iNCC-MPC-BMP6, or left untreated. For follow-up, µCT was performed at weeks 0, 4, and 8 weeks. At the time of sacrifice (week 8), histological and immunofluorescent analyses were performed. Both bio-inks supported cell survival and promoted osteogenic differentiation of iNCC-MPCs and BM-MSCs in vitro. At 4 weeks, cell viability of both BM-MSCs and iNCC-MPCs were increased in Ink-Bone compared to GelXA. The combination of Ink-Bone with iNCC-MPC-BMP6 resulted in an increased bone volume in the frontal bone compared to the other groups at 4 weeks post-surgery. At 8 weeks, both iNCC-MPC-BMP6 and iMSC-MSC-BMP6 resulted in an increased bone volume and partial bone bridging between the implant and host bone compared to the other groups. The results of this study show the potential of NCC-MPC-incorporated bio-ink to regenerate frontal cranial defects. Therefore, this bio-ink-cell combination should be further investigated for its therapeutic potential in large animal models with larger cranial defects, allowing for 3D printing of the cell-incorporated material.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Osteogênese , Tinta , Crista Neural , Camundongos Endogâmicos NOD , Camundongos SCID , Diferenciação Celular
4.
Stem Cells Transl Med ; 10(5): 797-809, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33512772

RESUMO

Replacement of lost cranial bone (partly mesodermal and partly neural crest-derived) is challenging and includes the use of nonviable allografts. To revitalize allografts, bone marrow-derived mesenchymal stromal cells (mesoderm-derived BM-MSCs) have been used with limited success. We hypothesize that coating of allografts with induced neural crest cell-mesenchymal progenitor cells (iNCC-MPCs) improves implant-to-bone integration in mouse cranial defects. Human induced pluripotent stem cells were reprogramed from dermal fibroblasts, differentiated to iNCCs and then to iNCC-MPCs. BM-MSCs were used as reference. Cells were labeled with luciferase (Luc2) and characterized for MSC consensus markers expression, differentiation, and risk of cellular transformation. A calvarial defect was created in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice and allografts were implanted, with or without cell coating. Bioluminescence imaging (BLI), microcomputed tomography (µCT), histology, immunofluorescence, and biomechanical tests were performed. Characterization of iNCC-MPC-Luc2 vs BM-MSC-Luc2 showed no difference in MSC markers expression and differentiation in vitro. In vivo, BLI indicated survival of both cell types for at least 8 weeks. At week 8, µCT analysis showed enhanced structural parameters in the iNCC-MPC-Luc2 group and increased bone volume in the BM-MSC-Luc2 group compared to controls. Histology demonstrated improved integration of iNCC-MPC-Luc2 allografts compared to BM-MSC-Luc2 group and controls. Human osteocalcin and collagen type 1 were detected at the allograft-host interphase in cell-seeded groups. The iNCC-MPC-Luc2 group also demonstrated improved biomechanical properties compared to BM-MSC-Luc2 implants and cell-free controls. Our results show an improved integration of iNCC-MPC-Luc2-coated allografts compared to BM-MSC-Luc2 and controls, suggesting the use of iNCC-MPCs as potential cell source for cranial bone repair.


Assuntos
Interface Osso-Implante , Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Aloenxertos , Animais , Células da Medula Óssea , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Crista Neural/citologia , Osseointegração , Crânio/diagnóstico por imagem , Microtomografia por Raio-X
5.
Arthroscopy ; 37(1): 252-265, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979500

RESUMO

PURPOSE: To identify, characterize, and compare the resident progenitor cell populations within the red-red, red-white, and white-white (WW) zones of freshly harvested human cadaver menisci and to characterize the vascularity of human menisci using immunofluorescence and 3-dimensional (3D) imaging. METHODS: Fresh adult human menisci were harvested from healthy donors. Menisci were enzymatically digested, mononuclear cells isolated, and characterized using flow cytometry with antibodies against mesenchymal stem cell surface markers (CD105, CD90, CD44, and CD29). Cells were expanded in culture, characterized, and compared with bone marrow-derived mesenchymal stem cells. Trilineage differentiation potential of cultured cells was determined. Vasculature of menisci was mapped in 3D using a modified uDisco clearing and immunofluorescence against vascular markers CD31, lectin, and alpha smooth muscle actin. RESULTS: There were no significant differences in the clonogenicity of isolated cells between the 3 zones. Flow cytometry showed presence of CD44+CD105+CD29+CD90+ cells in all 3 zones with high prevalence in the WW zone. Progenitors from all zones were found to be potent to differentiate to mesenchymal lineages. Larger vessels in the red-red zone of meniscus were observed spanning toward red-white, sprouting to smaller arterioles and venules. CD31+ cells were identified in all zones using the 3D imaging and co-localization of additional markers of vasculature (lectin and alpha smooth muscle actin) was observed. CONCLUSIONS: The presence of resident mesenchymal progenitors was evident in all 3 meniscal zones of healthy adult donors without injury. In addition, our results demonstrate the presence of vascularization in the WW zone. CLINICAL RELEVANCE: The existence of progenitors and presence of microvasculature in the WW zone of the meniscus suggests the potential for repair and biologic augmentation strategies in that zone of the meniscus in young healthy adults. Further research is necessary to fully define the functionality of the meniscal blood supply and its implications for repair.


Assuntos
Menisco/irrigação sanguínea , Células-Tronco Mesenquimais/citologia , Cadáver , Diferenciação Celular , Células Cultivadas , Citometria de Fluxo , Humanos , Menisco/citologia , Células-Tronco/citologia , Adulto Jovem
6.
Int J Mol Sci ; 21(24)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352698

RESUMO

Type 2 diabetes mellitus (T2DM) is associated with advanced glycation end product (AGE) enrichment and considered a risk factor for intervertebral disc (IVD) degeneration. We hypothesized that systemic AGE inhibition, achieved using pyridoxamine (PM), attenuates IVD degeneration in T2DM rats. To induce IVD degeneration, lumbar disc injury or sham surgery was performed on Zucker Diabetic Sprague Dawley (ZDSD) or control Sprague Dawley (SD) rats. Post-surgery, IVD-injured ZDSD rats received daily PM dissolved in drinking water or water only. The resulting groups were SD uninjured, SD injured, ZDSD uninjured, ZDSD injured, and ZDSD injured + PM. Levels of blood glycation and disc degeneration were investigated. At week 8 post-surgery, glycated serum protein (GSP) levels were increased in ZDSDs compared to SDs. PM treatment attenuated this increase. Micro-MRI analysis demonstrated IVD dehydration in injured versus uninjured SDs and ZDSDs. In the ZDSD injured + PM group, IVD dehydration was diminished compared to ZDSD injured. AGE levels were decreased and aggrecan levels increased in ZDSD injured + PM versus ZDSD injured rats. Histological and immunohistochemical analyses further supported the beneficial effect of PM. In summary, PM attenuated GSP levels and IVD degeneration processes in ZDSD rats, demonstrating its potential to attenuate IVD degeneration in addition to managing glycemia in T2DM.


Assuntos
Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Degeneração do Disco Intervertebral/prevenção & controle , Piridoxamina/farmacologia , Complexo Vitamínico B/farmacologia , Animais , Glicemia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica/efeitos adversos , Degeneração do Disco Intervertebral/etiologia , Degeneração do Disco Intervertebral/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Zucker
7.
Am J Sports Med ; 48(12): 3002-3012, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32924528

RESUMO

BACKGROUND: There is a high incidence of posttraumatic osteoarthritis (PTOA) after anterior cruciate ligament (ACL) injury, and these injuries represent an enormous health care economic burden. In an effort to address this unmet clinical need, there has been increasing interest in cell-based therapies. PURPOSE: To establish a translational large animal model of PTOA and demonstrate the feasibility of intra-articular human cell-based interventions. STUDY DESIGN: Descriptive laboratory study. METHODS: Nine Yucatan mini-pigs underwent unilateral ACL transection and were monitored for up to 12 weeks after injury. Interleukin 1 beta (IL-1ß) levels and collagen breakdown were evaluated longitudinally using enzyme-linked immunosorbent assays of synovial fluid, serum, and urine. Animals were euthanized at 4 weeks (n = 3) or 12 weeks (n = 3) after injury, and injured and uninjured limbs underwent magnetic resonance imaging (MRI) and histologic analysis. At 2 days after ACL injury, an additional 3 animals received an intra-articular injection of 107 human bone marrow-derived mesenchymal stem cells (hBM-MSCs) combined with a fibrin carrier. These cells were labeled with the luciferase reporter gene (hBM-MSCs-Luc) as well as fluorescent markers and intracellular iron nanoparticles. These animals were euthanized on day 0 (n = 1) or day 14 (n = 2) after injection. hBM-MSC-Luc viability and localization were assessed using ex vivo bioluminescence imaging, fluorescence imaging, and MRI. RESULTS: PTOA was detected as early as 4 weeks after injury. At 12 weeks after injury, osteoarthritis could be detected grossly as well as on histologic analysis. Synovial fluid analysis showed elevation of IL-1ß shortly after ACL injury, with subsequent resolution by 2 weeks after injury. Collagen type II protein fragments were elevated in the synovial fluid and serum after injury. hBM-MSCs-Luc were detected immediately after injection and at 2 weeks after injection using fluorescence imaging, MRI, and bioluminescence imaging. CONCLUSION: This study demonstrates the feasibility of reproducing the chondral changes, intra-articular cytokine alterations, and body fluid biomarker findings consistent with PTOA after ACL injury in a large animal model. Furthermore, we have demonstrated the ability of hBM-MSCs to survive and express transgene within the knee joint of porcine hosts without immunosuppression for at least 2 weeks. CLINICAL RELEVANCE: This model holds great potential to significantly contribute to investigations focused on the development of cell-based therapies for human ACL injury-associated PTOA in the future (see Appendix Figure A1, available online).


Assuntos
Lesões do Ligamento Cruzado Anterior/complicações , Cartilagem Articular , Transplante de Células-Tronco Mesenquimais , Osteoartrite/terapia , Animais , Lesões do Ligamento Cruzado Anterior/terapia , Biomarcadores/análise , Cartilagem Articular/diagnóstico por imagem , Citocinas/análise , Modelos Animais de Doenças , Humanos , Articulação do Joelho/fisiopatologia , Articulação do Joelho/cirurgia , Osteoartrite/etiologia , Suínos , Porco Miniatura , Líquido Sinovial
8.
J Biomater Appl ; 35(4-5): 532-543, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32627633

RESUMO

INTRODUCTION: Synthetic bone grafts are often used to achieve a well-consolidated fusion mass in spinal fusion procedures. These bone grafts function as scaffolds, and ideally support cell function and facilitate protein binding. OBJECTIVE: The aim was to characterize an electrospun, synthetic bone void filler (Reb) for its bone morphogenetic protein (BMP)-2 release properties and support of human mesenchymal stem cell (hMSC) function in vitro, and its efficacy in promoting BMP-2-/bone marrow aspirate-(BMA)-mediated posterolateral spinal fusion (PLF) in vivo. METHODS: BMP-2 release kinetics from Reb versus standard absorbable collagen sponge (ACS) was determined. hMSC adhesion and proliferation on Reb was tested using cell counting, fluorescence microscopy and MTS. Cell osteogenic differentiation was quantified via cellular alkaline phosphatase (ALP) activity. For in vivo analysis, 18 Lewis rats were treated during PLF surgery with the following groups: (I) Reb + BMA, (II) Reb + BMA + BMP-2 and (III) BMA. A safe, minimally effective dose of BMP-2 was used. Fusion consolidation was followed for 3 months using radiography and micro-CT. After sacrifice, fusion rate and biomechanical stiffness was determined using manual palpation, biomechanical tests and histology. RESULTS: In vitro, BMP-2 release kinetics were similar between Reb versus ACS. MSC proliferation and differentiation were increased in the presence of Reb. At 3 months post-surgery, fusion rates were 29% (group I), 100% (group II), and 0% (group III). Biomechanical stiffness was higher in group II versus I. Micro-CT showed an increased bone volume and connectivity density in group II. Trabecular thickness was increased in group I versus II. H&E staining showed newly formed bone in group II only. CONCLUSIONS: Reb possesses a high protein binding affinity and promotes hMSC function. Combination with BMA and minimal dose BMP-2 allowed for 100% bone fusion in vivo. This data suggests that a minimally effective dose of BMP-2 can be used when combined with Reb.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Transplante Ósseo/métodos , Colágeno/química , Fusão Vertebral/métodos , Alicerces Teciduais/química , Animais , Fenômenos Biomecânicos , Líquidos Corporais/citologia , Líquidos Corporais/metabolismo , Medula Óssea/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Feminino , Humanos , Células-Tronco Mesenquimais , Osteogênese , Radiografia , Ratos , Engenharia Tecidual , Microtomografia por Raio-X
9.
Spine J ; 20(9): 1480-1491, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32413485

RESUMO

BACKGROUND CONTEXT: Nonphysiological mechanical loading and inflammation are both critically involved in intervertebral disc (IVD) degeneration, which is characterized by an increase in cytokines and matrix metalloproteases (MMPs) in the nucleus pulposus (NP). This process is known to be mediated by the NF-κB pathway. CLINICAL SIGNIFICANCE: Current clinical treatments for IVD degeneration focus on the alleviation of symptoms rather than targeting the underlying mechanism. Injection of an NF-κB inhibitor may attenuate the progression of IVD degeneration. PURPOSE: To investigate the ability of the NF-κB inhibitor, NEMO binding domain peptide (NBD), to alter IVD degeneration processes by reducing IL-1ß- and mechanically-induced cytokine and MMP levels in human nucleus pulposus cells in vitro, and by attenuating IVD degeneration in an in vivo rat model for disc degeneration. STUDY DESIGN: Experimental in vitro and animal model. PATIENT SAMPLE: Discarded specimens of lumbar disc from 21 patients, and 12 Sprague Dawley rats. OUTCOME MEASURES: Gene and protein expression, cell viability, µMRI and histology. METHODS: IL-1ß-prestimulated human nucleus pulposus cells embedded into fibrin constructs were loaded in the Flexcell FX-5000 compression system at 5 kPa and 1 Hz for 48 hours in the presence and absence of NBD. Unloaded hNPC/fibrin constructs served as controls. Cell viability in loaded and unloaded constructs was quantified, and gene and protein expression levels determined. For in vivo testing, a rat needle disc puncture model was employed. Experimental groups included injured discs with and without NBD injection and uninjured controls. Levels of disc degeneration were determined via µMRI, qPCR and histology. Funding sources include $48,874 NASS Young Investigator Research Grant and $119,174 NIH 5K01AR071512-02. There were no applicable financial relationships or conflicts of interest. RESULTS: Mechanical compression of hNPC/fibrin constructs resulted in upregulation of MMP-3 and IL-8. Supplementation of media with 10 µM NBD during loading increased cell viability, and decreased MMP-3 gene and protein levels. IVD injury in rat resulted in an increase in MMP-3, IL-1ß and IL-6 gene expression. Injections of 250 µg of NBD during disc injury resulted in decreased IL-6 gene expression. µMRI analysis demonstrated a reduction of disc hydration in response to disc needle injury, which was attenuated in NBD-treated IVDs. Histological evaluation showed NP and AF lesion in injured discs, which was attenuated by NBD injection. CONCLUSIONS: The results of this study show NBD peptide's capacity to reduce IL-1ß- and loading-induced MMP-3 levels in hNPC/fibrin constructs while increasing the cells' viability, and to attenuate IVD degeneration in rat, involving downregulation of IL-6. Therefore, NBD may be a potential therapeutic agent to treat IVD degeneration.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Humanos , Degeneração do Disco Intervertebral/tratamento farmacológico , NF-kappa B , Peptídeos , Ratos , Ratos Sprague-Dawley
10.
Spine J ; 20(5): 800-808, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31759133

RESUMO

STUDY DESIGN: Experimental animal model. OBJECTIVE: The purpose of this study was to evaluate the hypothesis that insulin dependent diabetes mellitus (IDDM) will inhibit the formation of a solid bony union after spinal fusion surgery via an alteration of the microenvironment at the fusion site in a rat model. SUMMARY OF BACKGROUND DATA: Previous studies report diabetes mellitus (DM) and specifically IDDM as a risk factor for complications and poor surgical outcomes following spinal fusion. METHODS: Twenty control and 22 diabetic rats were obtained at 5 weeks of age. At 20 weeks of age, all animals underwent posterolateral lumbar fusion surgery using a tailbone autograft with diabetic rats receiving an implantable time release insulin pellet. A subset of rats was sacrificed 1-week postsurgery for growth factor (PDGF, IGF-I, TGF-ß, and VEGF) and proinflammatory cytokine ELISA analysis. All other rats were sacrificed 3-months postsurgery for fusion evaluation via manual palpation and micro CT. Glycated hemoglobin (HbA1c) was measured at surgery and sacrifice on all animals. RESULTS: Compared with healthy rats undergoing spinal fusion, rats with IDDM demonstrated a significant reduction in manual palpation fusion rates (16.7% vs. 43%, p<.05). Average bone mineral density, bone volume, and bone volume fraction were also significantly reduced and negatively correlated to blood glucose levels. IL-1B, IL-5, IL-10, TNF-α, and KC/GRO were significantly elevated in fusion beds of IDDM rats. CONCLUSIONS: This study demonstrates that rats with IDDM demonstrate a reduced rate and quality of spinal fusion with increased local levels of inflammatory cytokines. Targeted modalities are required to improve bone healing in this growing, high-risk population. CLINICAL SIGNIFICANCE: This is the first translational animal model of IDDM to evaluate the rate and quality of spinal fusion while controlling for other surgical and patient-related risk factors. Our findings demonstrate the complex nature by which IDDM impairs bone healing and highlight the need for additional basic science research to further elucidate this mechanism in order to develop more effective therapeutic interventions.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Doenças da Coluna Vertebral , Fusão Vertebral , Animais , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Ratos , Fusão Vertebral/efeitos adversos
11.
Med Sci Monit ; 25: 9531-9537, 2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31836696

RESUMO

BACKGROUND Intervertebral disc (IVD) degeneration is a common cause of lower back pain, which carries substantial morbidity and economic cost. Omega-3 fatty acids (n-3 FA) are known to reduce inflammatory processes with a relatively benign side effect profile. This study aimed to investigate the effect of n-3 FA supplementation on IVD degeneration. MATERIAL AND METHODS Two non-contiguous lumbar discs of 12 Sprague Dawley rats were needle-punctured to induce disc degeneration. Post-surgery, rats were randomly assigned to either a daily n-3 FA diet (530 mg/kg/day of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in a 2: 1 ratio, administered in sucrose solution) or control diet (sucrose solution only), which was given for the duration of the study. After 1 month, blood serum arachidonic acid/eicosapentaenoic acid (AA/EPA) ratios were analyzed. After 2 months, micro-MRI (magnetic resonance imaging) analysis and histological staining of disc explants were performed to analyze the IVD. RESULTS A reduction of blood AA/EPA ratios from 40 to 20 was demonstrated after 1 month of daily supplementation with n-3 FA. Micro-MRI analysis showed an injury-induced reduction of IVD hydration, which was attenuated in rats receiving n-3 FA. Histological evaluation demonstrated the destruction of nucleus pulposus tissue in response to needle puncture injury, which was less severe in the n-3 FA diet group. CONCLUSIONS The results of this study suggest that n-3 FA dietary supplementation reduces systemic inflammation by lowering AA/EPA ratios in blood serum and has potential protective effects on the progression of spinal disc degeneration, as demonstrated by reduced needle injury-induced dehydration of intervertebral discs and reduced histological signs of IVD degeneration.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Dor Lombar/patologia , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/veterinária , Masculino , Núcleo Pulposo/citologia , Ratos , Ratos Sprague-Dawley
12.
Theranostics ; 9(25): 7506-7524, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695783

RESUMO

Introduction: As many as 80% of the adult population experience back pain at some point in their lifetimes. Previous studies have indicated a link between back pain and intervertebral disc (IVD) degeneration. Despite decades of research, there is an urgent need for robust stem cell therapy targeting underlying causes rather than symptoms. It has been proposed that notochordal cells (NCs) appear to be the ideal cell type to regenerate the IVD: these cells disappear in humans as they mature, are replaced by nucleus pulposus (NP) cells, and their disappearance correlates with the initiation of degeneration of the disc. Human NCs are in short supply, thus here aimed for generation of notochordal-like cells from induced pluripotent cells (iPSCs). Methods: Human iPSCs were generated from normal dermal fibroblasts by transfecting plasmids encoding for six factors: OCT4, SOX2, KLF4, L-MYC, LIN28, and p53 shRNA. Then the iPSCs were treated with GSK3i to induce differentiation towards Primitive Streak Mesoderm (PSM). The differentiation was confirmed by qRT-PCR and immunofluorescence. PSM cells were transfected with Brachyury (Br)-encoding plasmid and the cells were encapsulated in Tetronic-tetraacrylate-fibrinogen (TF) hydrogel that mimics the NP environment (G'=1kPa), cultured in hypoxic conditions (2% O2) and with specifically defined growth media. The cells were also tested in vivo in a large animal model. IVD degeneration was induced after an annular puncture in pigs, 4 weeks later the cells were injected and IVDs were analyzed at 12 weeks after the injury using MRI, gene expression analysis and histology. Results: After short-term exposure of iPSCs to GSK3i there was a significant change in cell morphology, Primitive Streak Mesoderm (PSM) markers (Brachyury, MIXL1, FOXF1) were upregulated and markers of pluripotency (Nanog, Oct4, Sox2) were downregulated, both compared to the control group. PSM cells nucleofected with Br (PSM-Br) cultured in TF hydrogels retained the NC phenotype consistently for up to 8 weeks, as seen in the gene expression analysis. PSM-Br cells were co-cultured with bone marrow (BM)-derived mesenchymal stem cells (MSCs) which, with time, expressed the NC markers in higher levels, however the levels of expression in BM-MSCs alone did not change. Higher expression of NC and NP marker genes in human BM-MSCs was found to be induced by iNC-condition media (iNC-CM) than porcine NC-CM. The annular puncture induced IVD degeneration as early as 2 weeks after the procedure. The injected iNCs were detected in the degenerated discs after 8 weeks in vivo. The iNC-treated discs were found protected from degeneration. This was evident in histological analysis and changes in the pH levels, indicative of degeneration state of the discs, observed using qCEST MRI. Immunofluorescence stains show that their phenotype was consistent with the in vitro study, namely they still expressed the notochordal markers Keratin 18, Keratin 19, Noto and Brachyury. Conclusion: In the present study, we report a stepwise differentiation method to generate notochordal cells from human iPSCs. These cells not only demonstrate a sustainable notochordal cell phenotype in vitro and in vivo, but also show the functionality of notochordal cells and have protective effect in case of induced disc degeneration and prevent the change in the pH level of the injected IVDs. The mechanism of this effect could be suggested via the paracrine effect on resident cells, as it was shown in the in vitro studies with MSCs.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Degeneração do Disco Intervertebral/patologia , Notocorda/fisiologia , Animais , Biomarcadores/metabolismo , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura/métodos , Meios de Cultivo Condicionados/metabolismo , Feminino , Proteínas Fetais/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Fator 4 Semelhante a Kruppel , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Notocorda/metabolismo , Suínos , Porco Miniatura , Proteínas com Domínio T/metabolismo
13.
Am J Sports Med ; 47(11): 2737-2744, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31336056

RESUMO

BACKGROUND: Although tendon injuries and repairs are common, treatment of these injuries has limitations. The application of mesenchymal progenitor cells (MPCs) is increasingly used to optimize the biological process of tendon repair healing. However, clinically relevant technologies that effectively assess the localization of exogenous MPCs in vivo are lacking. HYPOTHESIS: Exogenous MPCs labeled with superparamagnetic iron oxide (SPIO) particles would allow monitoring of the localization and retention of cells within the site of implantation via magnetic resonance imaging (MRI) without negatively affecting cell survival or differentiation. STUDY DESIGN: Descriptive laboratory study. METHODS: Genetically modified C3H10T1/2 MPCs engineered to express luciferase (Luc+) reporter gene were implanted into surgically created Achilles tendon defects of 10 athymic nude rats (Hsd:RH-Foxn1rnu). Of these animals, 5 animals received Luc+ C3H10T1/2 MPCs colabeled with SPIO nanoparticles (+SPIO). These 2 groups of animals then underwent optical imaging with quantification of bioluminescence and MRI at 7, 14, and 28 days after surgery. Statistical analysis was conducted by use of 2-way analysis of variance. At 28 days after surgery, animals were euthanized and the treated limbs underwent histologic analysis. RESULTS: Optical imaging demonstrated that the implanted cells not only survived but also proliferated in vivo, and these cells remained viable for at least 4 weeks after implantation. In addition, SPIO labeling did not appear to affect MPC survival or proliferation, as assessed by quantitative bioluminescence imaging (P > .05, n = 5). MRI demonstrated that SPIO labeling was an effective method to monitor cell localization, retention, and viability for at least 4 weeks after implantation. Histologic and immunofluorescence analyses of the repaired tendon defect sites demonstrated tenocyte-like labeled cells, suggesting that cell differentiation was not affected by labeling the cells with the SPIO nanoparticles. CONCLUSION: MRI of exogenous MPCs labeled with SPIO particles allows for effective in vivo assessments of cell localization and retention in the setting of tendon regeneration for at least 4 weeks after implantation. This SPIO labeling does not appear to impair cell survival, transgene expression, or differentiation. CLINICAL RELEVANCE: SPIO labeling of MPCs appears to be safe for in vivo assessments of MPCs in tendon regeneration therapies and may be used for future clinical investigations of musculoskeletal regenerative medicine.


Assuntos
Imageamento por Ressonância Magnética/métodos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Regeneração/fisiologia , Traumatismos dos Tendões/fisiopatologia , Tendões/fisiologia , Animais , Diferenciação Celular , Sobrevivência Celular , Compostos Férricos , Nanopartículas de Magnetita , Camundongos , Imagem Óptica , Ratos , Ratos Nus , Traumatismos dos Tendões/diagnóstico por imagem , Tendões/diagnóstico por imagem
14.
Tissue Eng Part A ; 24(21-22): 1641-1651, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29766758

RESUMO

Recombinant human bone morphogenic protein-2 (BMP-2)-loaded absorbable collagen sponges (ACS) have been successfully used to enhance bone formation and to induce spinal fusion in humans. However, side effects, such as soft tissue edema and inflammation, have been reported. NEMO binding domain peptide (NBD) inhibits activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a central regulator of immune response. In this study, we investigated NBD's potential to reduce BMP-2-induced soft tissue inflammation without affecting BMP-2-mediated spinal fusion in rat. For evaluation of soft tissue inflammation, ACS containing BMP-2, BMP-2+NBD, NBD, or ACS only were implanted into intramuscular paraspinal sites of 32 rats. At day 2 postsurgery, edema formation at the implant sites was assessed using magnetic resonance imaging. T2-weighted relaxation time (T2-RT) values were increased in the BMP-2 group compared with BMP-2+NBD, NBD, and ACS groups. No difference in T2-RT values was detected between BMP-2+NBD versus NBD and ACS controls. Postsacrifice, histological analysis of the implant-surrounding zones showed increased mononuclear cell infiltration in the BMP-2 group compared with BMP-2+NBD and controls. The presence of BMP-2 increased relative NF-κB binding and gene expression of inflammatory markers, interleukin (IL)1ß, IL6, IL18, and chemokine ligand (CCL)2 and CCL3 compared with controls. In the BMP-2+NBD group, cytokine expression was blocked. No differences were found between BMP-2+NBD and control groups. For evaluation of spinal fusion, posterolateral intertransverse lumbar fusion procedures were performed on 16 rats. ACS were loaded with BMP-2 or BMP-2+NBD. After sacrifice at week 12, microcomputed tomographic assessment of the fusion site detected a higher bone volume and reduced trabecular spacing in the BMP-2+NBD group compared with BMP-2. Histological analysis did not show any differences in newly formed bone microarchitecture. In summary, addition of NBD to BMP-2-loaded ACS reduces BMP-2-induced soft tissue edema formation and mononuclear cell infiltration, diminishes NF-κB binding, and thus blocks transcription of NF-κB-regulated cytokines in rat. Furthermore, NBD stimulates bone formation in BMP-2-mediated spinal fusion, possibly through crosstalk of the NF-κB pathway with other pathways. The results of this study might provide the basis to develop new therapeutic bone grafting approaches with combinatory administration of BMP-2 and NBD for spinal fusion.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Edema/prevenção & controle , Peptídeos/farmacologia , Fusão Vertebral , Animais , Edema/metabolismo , Edema/patologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/farmacologia
15.
Mol Ther ; 26(7): 1746-1755, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784586

RESUMO

Ligament injuries occur frequently, substantially hindering routine daily activities and sports participation in patients. Surgical reconstruction using autogenous or allogeneic tissues is the gold standard treatment for ligament injuries. Although surgeons routinely perform ligament reconstructions, the integrity of these reconstructions largely depends on adequate biological healing of the interface between the ligament graft and the bone. We hypothesized that localized ultrasound-mediated, microbubble-enhanced therapeutic gene delivery to endogenous stem cells would lead to significantly improved ligament graft integration. To test this hypothesis, an anterior cruciate ligament reconstruction procedure was performed in Yucatan mini-pigs. A collagen scaffold was implanted in the reconstruction sites to facilitate recruitment of endogenous mesenchymal stem cells. Ultrasound-mediated reporter gene delivery successfully transfected 40% of cells recruited to the reconstruction sites. When BMP-6 encoding DNA was delivered, BMP-6 expression in the reconstruction sites was significantly enhanced. Micro-computed tomography and biomechanical analyses showed that ultrasound-mediated BMP-6 gene delivery led to significantly enhanced osteointegration in all animals 8 weeks after surgery. Collectively, these findings demonstrate that ultrasound-mediated gene delivery to endogenous mesenchymal progenitor cells can effectively improve ligament reconstruction in large animals, thereby addressing a major unmet orthopedic need and offering new possibilities for translation to the clinical setting.


Assuntos
Aloenxertos/citologia , Reconstrução do Ligamento Cruzado Anterior/métodos , Ligamentos/citologia , Tendões/citologia , Aloenxertos/metabolismo , Animais , Proteína Morfogenética Óssea 6/metabolismo , Colágeno/metabolismo , Técnicas de Transferência de Genes , Ligamentos/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Suínos , Porco Miniatura , Tendões/metabolismo , Transplante Homólogo/métodos , Ultrassonografia/métodos , Microtomografia por Raio-X/métodos
16.
Sci Transl Med ; 9(390)2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28515335

RESUMO

More than 2 million bone-grafting procedures are performed each year using autografts or allografts. However, both options carry disadvantages, and there remains a clear medical need for the development of new therapies for massive bone loss and fracture nonunions. We hypothesized that localized ultrasound-mediated, microbubble-enhanced therapeutic gene delivery to endogenous stem cells would induce efficient bone regeneration and fracture repair. To test this hypothesis, we surgically created a critical-sized bone fracture in the tibiae of Yucatán mini-pigs, a clinically relevant large animal model. A collagen scaffold was implanted in the fracture to facilitate recruitment of endogenous mesenchymal stem/progenitor cells (MSCs) into the fracture site. Two weeks later, transcutaneous ultrasound-mediated reporter gene delivery successfully transfected 40% of cells at the fracture site, and flow cytometry showed that 80% of the transfected cells expressed MSC markers. Human bone morphogenetic protein-6 (BMP-6) plasmid DNA was delivered using ultrasound in the same animal model, leading to transient expression and secretion of BMP-6 localized to the fracture area. Micro-computed tomography and biomechanical analyses showed that ultrasound-mediated BMP-6 gene delivery led to complete radiographic and functional fracture healing in all animals 6 weeks after treatment, whereas nonunion was evident in control animals. Collectively, these findings demonstrate that ultrasound-mediated gene delivery to endogenous mesenchymal progenitor cells can effectively treat nonhealing bone fractures in large animals, thereby addressing a major orthopedic unmet need and offering new possibilities for clinical translation.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Células-Tronco/metabolismo , Engenharia Tecidual/métodos , Animais , Proteína Morfogenética Óssea 6/metabolismo , Regeneração Óssea/fisiologia , Células-Tronco Mesenquimais/citologia , Microbolhas , Células-Tronco/citologia , Suínos , Porco Miniatura
17.
Stem Cell Res Ther ; 8(1): 51, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28279202

RESUMO

BACKGROUND: A devastating condition that leads to trauma-related morbidity, multiple rib fractures, remain a serious unmet clinical need. Systemic administration of mesenchymal stem cells (MSCs) has been shown to regenerate various tissues. We hypothesized that parathyroid hormone (PTH) therapy would enhance MSC homing and differentiation, ultimately leading to bone formation that would bridge rib fractures. METHODS: The combination of human MSCs (hMSCs) and a clinically relevant PTH dose was studied using immunosuppressed rats. Segmental defects were created in animals' fifth and sixth ribs. The rats were divided into four groups: a negative control group, in which animals received vehicle alone; the PTH-only group, in which animals received daily subcutaneous injections of 4 µg/kg teriparatide, a pharmaceutical derivative of PTH; the hMSC-only group, in which each animal received five injections of 2 × 106 hMSCs; and the hMSC + PTH group, in which animals received both treatments. Longitudinal in vivo monitoring of bone formation was performed biweekly using micro-computed tomography (µCT), followed by histological analysis. RESULTS: Fluorescently-dyed hMSCs were counted using confocal microscopy imaging of histological samples harvested 8 weeks after surgery. PTH significantly augmented the number of hMSCs that homed to the fracture site. Immunofluorescence of osteogenic markers, osteocalcin and bone sialoprotein, showed that PTH induced cell differentiation in both exogenously administered cells and resident cells. µCT scans revealed a significant increase in bone volume only in the hMSC + PTH group, beginning by the 4th week after surgery. Eight weeks after surgery, 35% of ribs in the hMSC + PTH group had complete bone bridging, whereas there was complete bridging in only 6.25% of ribs (one rib) in the PTH-only group and in none of the ribs in the other groups. Based on the µCT scans, biomechanical analysis using the micro-finite element method demonstrated that the healed ribs were stiffer than intact ribs in torsion, compression, and bending simulations, as expected when examining bone callus composed of woven bone. CONCLUSIONS: Administration of both hMSCs and PTH worked synergistically in rib fracture healing, suggesting this approach may pave the way to treat multiple rib fractures as well as additional fractures in various anatomical sites.


Assuntos
Regeneração Óssea , Transplante de Células-Tronco Mesenquimais , Hormônio Paratireóideo/administração & dosagem , Fraturas das Costelas/terapia , Animais , Modelos Animais de Doenças , Consolidação da Fratura/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/fisiologia , Osteocalcina/biossíntese , Ratos , Fraturas das Costelas/fisiopatologia , Sialoglicoproteínas/biossíntese , Microtomografia por Raio-X
18.
Bone ; 97: 192-200, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28119180

RESUMO

Nearly all bone fractures in humans can deteriorate into a non-union fracture, often due to formation of fibrotic tissue. Cranial allogeneic bone grafts present a striking example: although seemingly attractive for craniofacial reconstructions, they often fail due to fibrosis at the host-graft junction, which physically prevents the desired bridging of bone between the host and graft and revitalization of the latter. In the present study we show that intermittent treatment with recombinant parathyroid hormone-analogue (teriparatide) modulates neovascularization feeding in the graft surroundings, consequently reducing fibrosis and scar tissue formation and facilitates osteogenesis. Longitudinal inspection of the vascular tree feeding the allograft has revealed that teriparatide induces formation of small-diameter vessels in the 1st week after surgery; by the 2nd week, abundant formation of small-diameter blood vessels was detected in untreated control animals, but far less in teriparatide-treated mice, although in total, more blood capillaries were detected in the animals that were given teriparatide. By that time point we observed expression of the profibrogenic mediator TGF-ß in untreated animals, but negligible expression in the teriparatide-treated mice. To evaluate the formation of scar tissue, we utilized a magnetization transfer contrast MRI protocol to differentiate osteoid tissue from scar tissue, based on the characterization of collagen fibers. Using this method we found that significantly more bone matrix was formed in animals given teriparatide than in control animals. Altogether, our findings show how teriparatide diminishes scarring, ultimately leading to superior bone graft integration.


Assuntos
Aloenxertos/efeitos dos fármacos , Transplante Ósseo/efeitos adversos , Cicatriz/tratamento farmacológico , Cicatriz/etiologia , Neovascularização Fisiológica/efeitos dos fármacos , Crânio/patologia , Teriparatida/uso terapêutico , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/crescimento & desenvolvimento , Calcificação Fisiológica/efeitos dos fármacos , Feminino , Fibrose , Imageamento por Ressonância Magnética , Camundongos Endogâmicos C57BL , Teriparatida/farmacologia
19.
Stem Cells Transl Med ; 5(11): 1447-1460, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27400789

RESUMO

: Mesenchymal stem cells (MSCs) are currently the most established cells for skeletal tissue engineering and regeneration; however, their availability and capability of self-renewal are limited. Recent discoveries of somatic cell reprogramming may be used to overcome these challenges. We hypothesized that induced pluripotent stem cells (iPSCs) that were differentiated into MSCs could be used for bone regeneration. Short-term exposure of embryoid bodies to transforming growth factor-ß was used to direct iPSCs toward MSC differentiation. During this process, two types of iPSC-derived MSCs (iMSCs) were identified: early (aiMSCs) and late (tiMSCs) outgrowing cells. The transition of iPSCs toward MSCs was documented using MSC marker flow cytometry. Both types of iMSCs differentiated in vitro in response to osteogenic or adipogenic supplements. The results of quantitative assays showed that both cell types retained their multidifferentiation potential, although aiMSCs demonstrated higher osteogenic potential than tiMSCs and bone marrow-derived MSCs (BM-MSCs). Ectopic injections of BMP6-overexpressing tiMSCs produced no or limited bone formation, whereas similar injections of BMP6-overexpressing aiMSCs resulted in substantial bone formation. Upon orthotopic injection into radial defects, all three cell types regenerated bone and contributed to defect repair. In conclusion, MSCs can be derived from iPSCs and exhibit self-renewal without tumorigenic ability. Compared with BM-MSCs, aiMSCs acquire more of a stem cell phenotype, whereas tiMSCs acquire more of a differentiated osteoblast phenotype, which aids bone regeneration but does not allow the cells to induce ectopic bone formation (even when triggered by bone morphogenetic proteins), unless in an orthotopic site of bone fracture. SIGNIFICANCE: Mesenchymal stem cells (MSCs) are currently the most established cells for skeletal tissue engineering and regeneration of various skeletal conditions; however, availability of autologous MSCs is very limited. This study demonstrates a new method to differentiate human fibroblast-derived induced pluripotent stem cells (iPSCs) to cells with MSC properties, which we comprehensively characterized including differentiation potential and transcriptomic analysis. We showed that these iPS-derived MSCs are able to regenerate nonunion bone defects in mice more efficiently than bone marrow-derived human MSCs when overexpressing BMP6 using a nonviral transfection method.

20.
Bioengineering (Basel) ; 3(1)2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27141513

RESUMO

Although most fractures heal, critical defects in bone fail due to aberrant differentiation of mesenchymal stem cells towards fibrosis rather than osteogenesis. While conventional bioengineering solutions to this problem have focused on enhancing angiogenesis, which is required for bone formation, recent studies have shown that fibrotic non-unions are associated with arteriogenesis in the center of the defect and accumulation of mast cells around large blood vessels. Recently, recombinant parathyroid hormone (rPTH; teriparatide; Forteo) therapy have shown to have anti-fibrotic effects on non-unions and critical bone defects due to inhibition of arteriogenesis and mast cell numbers within the healing bone. As this new direction holds great promise towards a solution for significant clinical hurdles in craniofacial reconstruction and limb salvage procedures, this work reviews the current state of the field, and provides insights as to how teriparatide therapy could be used as an adjuvant for healing critical defects in bone. Finally, as teriparatide therapy is contraindicated in the setting of cancer, which constitutes a large subset of these patients, we describe early findings of adjuvant therapies that may present future promise by directly inhibiting arteriogenesis and mast cell accumulation at the defect site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA