Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Magn Reson ; 367: 107760, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39241283

RESUMO

The Kӓrger model and its derivatives have been widely used to incorporate transcytolemmal water exchange rate, an essential characteristic of living cells, into analyses of diffusion MRI (dMRI) signals from tissues. The Kӓrger model consists of two homogeneous exchanging components coupled by an exchange rate constant and assumes measurements are made with sufficiently long diffusion time and slow water exchange. Despite successful applications, it remains unclear whether these assumptions are generally valid for practical dMRI sequences and biological tissues. In particular, barrier-induced restrictions to diffusion produce inhomogeneous magnetization distributions in relatively large-sized compartments such as cancer cells, violating the above assumptions. The effects of this inhomogeneity are usually overlooked. We performed computer simulations to quantify how restriction effects, which in images produce edge enhancements at compartment boundaries, influence different variants of the Kӓrger-model. The results show that the edge enhancement effect will produce larger, time-dependent estimates of exchange rates in e.g., tumors with relatively large cell sizes (>10 µm), resulting in overestimations of water exchange as previously reported. Moreover, stronger diffusion gradients, longer diffusion gradient durations, and larger cell sizes, all cause more pronounced edge enhancement effects. This helps us to better understand the feasibility of the Kärger model in estimating water exchange in different tissue types and provides useful guidance on signal acquisition methods that may mitigate the edge enhancement effect. This work also indicates the need to correct the overestimated transcytolemmal water exchange rates obtained assuming the Kärger-model.


Assuntos
Simulação por Computador , Imagem de Difusão por Ressonância Magnética , Água , Imagem de Difusão por Ressonância Magnética/métodos , Água/química , Humanos , Algoritmos , Difusão , Modelos Biológicos
2.
ArXiv ; 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39130198

RESUMO

Early assessment of tumor therapeutic response is an important topic in precision medicine to optimize personalized treatment regimens and reduce unnecessary toxicity, cost, and delay. Although diffusion MRI (dMRI) has shown potential to address this need, its predictive accuracy is limited, likely due to its unspecific sensitivity to overall pathological changes. In this work, we propose a new quantitative dMRI-based method dubbed EXCHANGE (MRI of water Exchange, Confined and Hindered diffusion under Arbitrary Gradient waveform Encodings) for simultaneous mapping of cell size, cell density, and transcytolemmal water exchange. Such rich microstructural information comprehensively evaluates tumor pathologies at the cellular level. Validations using numerical simulations and in vitro cell experiments confirmed that the EXCHANGE method can accurately estimate mean cell size, density, and water exchange rate constants. The results from in vivo animal experiments show the potential of EXCHANGE for monitoring tumor treatment response. Finally, the EXCHANGE method was implemented in breast cancer patients with neoadjuvant chemotherapy, demonstrating its feasibility in assessing tumor therapeutic response in clinics. In summary, a new, quantitative dMRI-based EXCHANGE method was proposed to comprehensively characterize tumor microstructural properties at the cellular level, suggesting a unique means to monitor tumor treatment response in clinical practice.

3.
J Colloid Interface Sci ; 630(Pt A): 940-950, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36327710

RESUMO

Designing transition metal-oxide-based bifunctional electrocatalysts with excellent activity and stability for OER/HER to achieve efficient water splitting is of great importance for renewable energy technologies. Herein, a highly efficient bifunctional catalysts with oxygen-rich vacancies of nickel-decorated RuO2 (NiRuO2-x) prepared by a unique one-pot glucose-blowing approach were investigated. Remarkably, the NiRuO2-x catalysts exhibited excellent HER and OER activity at 10 mA cm-2 in alkaline solution with only a minimum overpotential of 51 mV and 245 mV, respectively. Furthermore, the NiRuO2-x overall water splitting exhibited an ultra-low voltage of 1.6 V to obtain 10 mA cm-2 and stability for more than 10 h. XPS measurement and theoretical calculations demonstrated that the introduction of Ni-dopant and oxygen vacancies make the d-band center to lie close to the Fermi energy level, the chemical bonds between the active site and the adsorbed oxygen intermediate state are enhanced, thereby lowering the reaction activation barriers of HER and OER. The assembly of solar-driven alkaline electrolyzers facilitate the application of the NiRuO2-x bifunctional catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA