Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Theranostics ; 14(13): 5200-5218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39267780

RESUMO

Rationale: Patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) have a high short-term mortality rate. Semaphorin-6B (SEMA6B) plays a crucial role in the pathogenesis of HBV-ACLF, but its molecular basis remains unclear. This study aimed to elucidate the mechanisms of SEMA6B in HBV-ACLF progression. Methods: A total of 321 subjects with HBV-ACLF, liver cirrhosis (LC), chronic hepatitis B (CHB), and normal controls (NC) from a prospective multicenter cohort were studied. 84 subjects (HBV-ACLF, n = 50; LC, n = 10; CHB, n = 10; NC, n = 14) among them underwent mRNA sequencing using peripheral blood mononuclear cells (PBMCs) to clarify the mechanisms of SEMA6B in HBV-ACLF. These mechanisms were validated through in vitro studies with hepatocytes and macrophages, as well as in vivo using SEMA6B knockout mice and mice treated with synthetic SEMA6B siRNA. Results: Transcriptome analysis of PBMCs showed that SEMA6B was among the most differentially expressed genes when comparing patients with HBV-ACLF to those with LC, CHB, or NC. ROC analysis demonstrated the reliable diagnostic value of SEMA6B for HBV-ACLF in both the sequencing cohort and an external validation cohort (AUROC = 0.9788 and 0.9026, respectively). SEMA6B levels were significantly higher in the HBV-ACLF patients, especially in non-survivors, with high expression mainly observed in macrophages and hepatocytes in liver tissue. Genes significantly associated with highly expressed SEMA6B were enriched in inflammation and apoptosis pathways in HBV-ACLF non-survivors. Overexpression of SEMA6B in macrophages activated systemic inflammatory responses, while its overexpression in hepatocytes inhibited proliferation through G0/G1 cell cycle arrest and induced apoptosis. Knocking out SEMA6B rescued mice with liver failure by improving liver functions, reducing inflammatory responses, and decreasing hepatocyte apoptosis. Transcriptome analysis of liver tissue showed that SEMA6B knockout significantly ameliorated the liver failure signature, significantly downregulating inflammation-related pathways. Importantly, therapeutic delivery of synthetic SEMA6B siRNA also improved liver function, and reduced both inflammation and hepatocyte apoptosis in mice with liver failure. Conclusion: SEMA6B, a potential diagnostic biomarker for HBV-ACLF, exacerbates liver failure through macrophage-mediated systemic inflammation and hepatocyte apoptosis. These findings highlight SEMA6B as a promising early treatment target for HBV-ACLF patients.


Assuntos
Insuficiência Hepática Crônica Agudizada , Apoptose , Vírus da Hepatite B , Hepatite B Crônica , Hepatócitos , Macrófagos , Camundongos Knockout , Semaforinas , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência Hepática Crônica Agudizada/virologia , Insuficiência Hepática Crônica Agudizada/metabolismo , Hepatite B Crônica/complicações , Hepatite B Crônica/patologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Inflamação , Leucócitos Mononucleares/metabolismo , Cirrose Hepática/virologia , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/genética , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Estudos Prospectivos , Semaforinas/metabolismo , Semaforinas/genética
2.
J Vis Exp ; (192)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36912553

RESUMO

Tumor recurrence is an important factor indicative of a poor prognosis in glioblastoma (GBM). Many studies are attempting to identify effective therapeutic strategies to prevent the recurrence of GBM after surgery. Bioresponsive therapeutic hydrogels capable of sustaining locally released drugs are frequently used for the local treatment of GBM after surgery. However, research is limited due to the lack of a suitable GBM relapse post-resection model. Here, a GBM relapse post-resection model was developed and applied in therapeutic hydrogel investigations. This model was constructed based on the orthotopic intracranial GBM model, which is widely used in studies on GBM. Subtotal resection was performed on the orthotopic intracranial GBM model mouse to mimic the clinical treatment. The residual tumor was used to indicate the size of the tumor growth. This model is easy to build, can better mimic the situation of GBM surgical resection, and can be applied in various studies on the local treatment of GBM relapse post-resection. As a result, the GBM relapse post-resection model provides a unique GBM recurrence model for effective local treatment studies of relapse post-resection.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Camundongos , Animais , Glioblastoma/patologia , Hidrogéis/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia , Doença Crônica , Recidiva
3.
J Med Virol ; 95(4): e28710, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36975761

RESUMO

Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is a syndrome with high short-term mortality. The mechanism of the transcription factor ETS2 in ACLF remains unclear. This study aimed to clarify the molecular basis of ETS2 in ACLF pathogenesis. Peripheral blood mononuclear cells from patients with HBV-ACLF (n = 50) were subjected to RNA sequencing. Transcriptome analysis showed that ETS2 expression was significantly higher in ACLF patients than in patients with chronic liver diseases and healthy subjects (all p < 0.001). Area-under-ROC analysis of ETS2 demonstrated high values for the prediction of 28-/90-day mortality in ACLF patients (0.908/0.773). Significantly upregulated signatures of the innate immune response (monocytes/neutrophils/inflammation-related pathways) were observed in ACLF patients with high ETS2 expression. Myeloid-specific ETS2 deficiency in liver failure mice resulted in deterioration of biofunctions and increased expression of pro-inflammatory cytokines (IL-6/IL-1ß/TNF-α). Knockout of ETS2 in macrophages confirmed the downregulation of IL-6 and IL-1ß caused by both HMGB1 and lipopolysaccharide, and an NF-κB inhibitor reversed the suppressive effect of ETS2. ETS2 is a potential prognostic biomarker of ACLF patients that alleviates liver failure by downregulating the HMGB1-/lipopolysaccharide-triggered inflammatory response and may serve as a therapeutic target for ACLF.


Assuntos
Insuficiência Hepática Crônica Agudizada , Proteína HMGB1 , Hepatite B Crônica , Animais , Camundongos , Insuficiência Hepática Crônica Agudizada/patologia , Vírus da Hepatite B , Proteína HMGB1/metabolismo , Inflamação/metabolismo , Interleucina-6/genética , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos , Camundongos Knockout , Prognóstico , Humanos
4.
ACS Biomater Sci Eng ; 9(4): 1940-1951, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36913674

RESUMO

Functional bioengineered livers (FBLs) are promising alternatives to orthotopic liver transplantation. However, orthotopic transplantation of FBLs has not yet been reported. This study aimed to perform the orthotopic transplantation of FBLs in rats subjected to complete hepatectomy. FBLs were developed using rat whole decellularized liver scaffolds (DLSs) with human umbilical vein endothelial cells implanted via the portal vein, and human bone marrow mesenchymal stem cells (hBMSCs) and mouse hepatocyte cell line implanted via the bile duct. FBLs were evaluated in terms of endothelial barrier function, biosynthesis, and metabolism and orthotopically transplanted into rats to determine the survival benefit. The FBLs with well-organized vascular structures exhibited endothelial barrier function, with reduced blood cell leakage. The implanted hBMSCs and hepatocyte cell line were well aligned in the parenchyma of the FBLs. The high levels of urea, albumin, and glycogen in the FBLs indicated biosynthesis and metabolism. Orthotopic transplantation of FBLs achieved a survival time of 81.38 ± 4.263 min in rats (n = 8) subjected to complete hepatectomy, whereas control animals (n = 4) died within 30 min (p < 0.001). After transplantation, CD90-positive hBMSCs and the albumin-positive hepatocyte cell line were scattered throughout the parenchyma, and blood cells were limited within the vascular lumen of the FBLs. In contrast, the parenchyma and vessels were filled with blood cells in the control grafts. Thus, orthotopic transplantation of whole DLS-based FBLs can effectively prolong the survival of rats subjected to complete hepatectomy. In summary, this work was the first to perform the orthotopic transplantation of FBLs, with limited survival benefits, which still has important value for the advancement of bioengineered livers.


Assuntos
Transplante de Fígado , Fígado , Camundongos , Ratos , Animais , Humanos , Fígado/cirurgia , Fígado/fisiologia , Hepatócitos , Células Endoteliais da Veia Umbilical Humana , Albuminas
5.
Liver Int ; 43(6): 1345-1356, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36810858

RESUMO

BACKGROUND AND AIMS: Human bone marrow mesenchymal stem cells (hBMSCs) are important for developing a dual-humanized mouse model to clarify disease pathogenesis. We aimed to elucidate the characteristics of hBMSC transdifferentiation into liver and immune cells. METHODS: A single type of hBMSCs was transplanted into immunodeficient Fah-/- Rag2-/- IL-2Rγc-/- SCID (FRGS) mice with fulminant hepatic failure (FHF). Liver transcriptional data from the hBMSC-transplanted mice were analysed to identify transdifferentiation with traces of liver and immune chimerism. RESULTS: Mice with FHF were rescued by implanted hBMSCs. Human albumin/leukocyte antigen (HLA) and CD45/HLA double-positive hepatocytes and immune cells were observed in the rescued mice during the initial 3 days. The transcriptomics analysis of liver tissues from dual-humanized mice identified two transdifferentiation phases (cellular proliferation at 1-5 days and cellular differentiation/maturation at 5-14 days) and ten cell lineages transdifferentiated from hBMSCs: human hepatocytes, cholangiocytes, stellate cells, myofibroblasts, endothelial cells and immune cells (T/B/NK/NKT/Kupffer cells). Two biological processes, hepatic metabolism and liver regeneration, were characterized in the first phase, and two additional biological processes, immune cell growth and extracellular matrix (ECM) regulation, were observed in the second phase. Immunohistochemistry verified that the ten hBMSC-derived liver and immune cells were present in the livers of dual-humanized mice. CONCLUSIONS: A syngeneic liver-immune dual-humanized mouse model was developed by transplanting a single type of hBMSC. Four biological processes linked to the transdifferentiation and biological functions of ten human liver and immune cell lineages were identified, which may help to elucidate the molecular basis of this dual-humanized mouse model for further clarifying disease pathogenesis.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Células Endoteliais , Transcriptoma , Camundongos SCID , Fígado/patologia , Células-Tronco Mesenquimais/metabolismo
6.
J Immunother Cancer ; 11(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657812

RESUMO

BACKGROUND: Immune-checkpoint inhibitors (ICIs) remain ineffective in a large group of non-small cell lung cancer (NSCLC) patients. Mucosal-associated invariant T (MAIT) cells, a population of unconventional innate-like T lymphocytes abundant in the human body, play important roles in human malignancies. Little is known about the immune characteristics of MAIT cells in NSCLC and correlation with prognosis and response rate of ICIs treatment. METHODS: To investigate the distribution, activation status, and function of MAIT cells in NSCLC patients and their correlations with anti-PD-1 immunotherapy, MAIT cells in peripheral blood, tumor and paratumor samples from NSCLC patients with or without anti-PD-1 immunotherapy were analyzed using flow cytometry and single-cell RNA-sequencing. RESULTS: MAIT cells were enriched in the tumor lesions of NSCLC patients migrating from peripheral blood via the CCR6-CCL20 axis. Both peripheral and tumor-infiltrating MAIT cells displayed an exhausted phenotype with upregulated PD-1, TIM-3, and IL-17A while less IFN-γ. Anti-PD-1 therapy reversed the function of circulating MAIT cells with higher expression of IFN-γ and granzyme B. Subcluster MAIT-17s (defined as cells highly expressing exhausted and Th17-related genes) mainly infiltrated in the non-responsive tissues, while the subcluster MAIT-IFNGRs (cells expressing genes related to cytotoxic function) were mainly enriched in responsive tissues. Moreover, we found predictive value of circulating MAIT cells for anti-PD-1 immunotherapy in NSCLC patients. CONCLUSIONS: MAIT cells shifted to an exhausted tumor-promoting phenotype in NSCLC patients and the circulating MAIT subset could be a predictor for patients who respond to anti-PD-1 immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células T Invariantes Associadas à Mucosa , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Prognóstico , Imunoterapia
7.
Int J Med Sci ; 19(1): 152-163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34975309

RESUMO

Background and Aims: MicroRNAs (miRNAs) play important roles in hepatocyte differentiation from human bone marrow mesenchymal stem cells (hBMSCs) and the therapeutic application in vivo. However, the mechanisms of miRNA regulation are still unknown. This study aimed to profile the miRNA basis for improving the function of hBMSC-differentiated hepatocyte-like cells (hBMSC-Heps). Methods: Characteristic miRNAs of hBMSC-Heps were identified by transcriptome sequencing and validated by quantitative real-time polymerase chain reaction (qRT-PCR). An in vivo hBMSC transplantation model was used to assess the regulatory effects of miRNAs on liver regeneration during hBMSC therapy in pigs with fulminant hepatic failure (FHF). The biological functions of significant miRNA molecules were confirmed by transfection of miRNA activators or inhibitors into hBMSCs during hepatogenic differentiation. Results: The transcriptome of hBMSC-Heps showed characteristics distinct from those of undifferentiated hBMSCs. A total of 77 miRNAs were significantly differentially expressed in hBMSC-Heps at day 10 and day 20 after hBMSC differentiation that were directly related to the functions of hepatocytes. Among the top 10 significantly differentially expressed and the top 10 most abundant miRNAs, nine miRNAs that exhibited a pattern of gradual change were chosen for further analysis. The expression of nine miRNAs was confirmed by qRT-PCR in vitro and showed the same changing trends in vivo in an hBMSC transplantation model in pigs. Functional experiments with these miRNAs showed that activators of hsa-miR-26b-5p and hsa-miR-148a-3p and an inhibitor of hsa-miR-423-3p were sufficient to improve the differentiation of hBMSCs into hepatocyte-like cells. Conclusions: Transcriptome profiles of miRNA revealed the basis of the differentiation and development of hBMSC-Heps. Manipulation of three miRNAs (hsa-miR-26b-5p, hsa-miR-148a-3p and hsa-miR-423-3p) significantly improved hepatocyte generation and liver regeneration, indicating the potential of these miRNAs for future clinical applications.


Assuntos
Diferenciação Celular , Hepatócitos/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Falência Hepática Aguda/terapia , Masculino , Suínos , Porco Miniatura , Transcriptoma
8.
Biol Trace Elem Res ; 199(7): 2482-2488, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32935207

RESUMO

Iron is one of the most important trace elements in the body, and its homeostasis is essential to the normal function of the immune system. Complement component C3, which is the converging of three main pathways of complement system activation, plays a key role in the innate immunity. However, the relationship between iron homeostasis and complement C3 remains unknown. The aim of our study was to analyze the relationship between serum iron and ferritin level and complement C3 and C4. A total of 590 healthy individuals were recruited in our study. Higher serum complement C3 level (p < 0.001) was found in individuals with higher serum ferritin level (> 104.0 µg/L). Moreover, serum iron level and serum ferritin level were positively correlated with complement C3 (r = 0.133, p = 0.001; r = 0.221, p < 0.001) and complement C4 (r = 0.117, p = 0.004; r = 0.123, p = 0.003). The linear regression analysis displayed that both serum iron level and serum ferritin level were linearly correlated with serum complement C3 level (adjusted beta: 2.382, 95% CI: 0.841-3.923; adjusted beta: 42.911, 95% CI: 29.070-56.751). To explore the relationship between iron homeostasis and complement C3 further, the serum samples from C3-/- mice and the wild-type (WT) control mice were obtained. Significantly lower serum iron level and higher ferritin level were found in C3-/- mice than those in WT mice (p < 0.001; p < 0.001), indicating that complement C3 might influence iron distribution and utilization. Overall, these data suggested that serum iron and ferritin levels were correlated with complement C3. The deficiency of complement C3 may disrupt the regular iron metabolism in the body.


Assuntos
Complemento C3 , Complemento C4 , Animais , Complemento C3/metabolismo , Complemento C4/metabolismo , Ferritinas , Ferro , Camundongos
9.
J Biomed Res ; 34(5): 369-378, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32981897

RESUMO

Environmental pollutants, such as bisphenol A (BPA) have recently been implicated in the development of adverse birth outcomes. However, the underlying teratogenic mechanisms remain unclear. We investigated the effects of BPA on the migration and invasion of human primary extravillous trophoblast HTR-8/SVneo cells. Our results indicated that BPA reduced cell migration and invasion. Moreover, it altered the ratio of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) by downregulating MMP-2 and MMP-9, and upregulating TIMP-1 and TIMP-2. Furthermore, BPA suppressed integrin ß1, integrin α5, and vimentin. Interestingly, BPA-induced invasion was partially restored by G15, a membrane G-protein-coupled estrogen receptor 30 antagonist. We further revealed that 42 proteins were differentially expressed by mass spectrometry analysis, which could be divided into three categories based on gene ontology including biological process, cellular component, and molecular function. These results suggest that BPA reduces HTR-8/SVneo cell migration and invasion by downregulating MMP-2 and MMP-9, up-regulating TIMP-1 and TIMP-2, and suppressing adhesion molecules.

10.
Stem Cell Res ; 47: 101900, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32622343

RESUMO

BACKGROUND & AIMS: Biliary injury is one of the main pathological mechanisms of fulminant hepatic failure (FHF). Delta-like ligand 4 (DLL4)-mediated Notch activation contributes to reversing biliary injury; however, the specific role of DLL4 in biliary restoration is still unclear. This study aimed to determine whether human bone marrow mesenchymal stem cells (hBMSCs) can differentiate into biliary epithelial cells (cholangiocytes) in vitro and in vivo and to clarify the role of DLL4 in restoring damaged liver by enhancing cholangiocyte differentiation. METHODS: hBMSCs were transplanted into immunodeficient mice (FRGS) with FHF induced by the hamster-anti-mouse CD95 antibody JO2. The appearance of human cholangiocytes was evaluated in the generated hBMSC-FRGS mice by q-PCR expression, flow cytometry and immunohistochemistry. The potency of DLL4 in inducing cholangiocyte differentiation from hBMSCs was assessed by observing the cell morphology and measuring the expression of cholangiocyte-specific genes and proteins. RESULTS: Human KRT19- and KRT7-double-positive cholangiocyte-like cells appeared in hBMSC-FRGS mice at 12 weeks after transplantation. After these cells were separated and collected by fluorescent-activated cell sorting (FACS), there were high levels of expression of eight typical human cholangiocyte-specific genes and proteins (e.g., KRT19 and KRT7). Furthermore, hBMSC-derived cholangiocytes induced by DLL4 had a better shape with higher nucleus/cytoplasm ratios and showed a specific increase in the expression of cholangiocyte-specific genes and proteins (e.g., KRT19, KRT7, SOX9 and CFTR). CONCLUSIONS: Cholangiocytes can be efficiently differentiated from hBMSCs in vivo and in vitro. DLL4 restores damaged liver by enhancing cholangiocyte differentiation from hBMSCs and has the potential to be used in future clinical therapeutic applications.

11.
Int J Med Sci ; 17(2): 263-273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32038110

RESUMO

Background: Human bone marrow mesenchymal stem cell-derived hepatocyte-like cells (hBMSC-HLCs) are a promising alternative for primary human hepatocytes (HHs) for treating liver disease. However, the molecular characteristics of HLCs remain unclear. Here, we aimed to clarify the transcriptome characteristics of hBMSC-HLCs for future clinical application. Materials and Methods: hBMSCs were isolated from the bone marrow of healthy volunteers and differentiated into hepatocytes. mRNA sequencing was used in the transcriptome profiling of hBMSC-HLCs, with hBMSCs and HHs as controls. Results: hBMSC-HLCs exhibited a polygonal morphology, glycogen accumulation and albumin expression. A total of 630 upregulated and 1082 downregulated genes were observed in hBMSC-HLCs and HHs compared with undifferentiated hBMSCs. The upregulated genes were mainly involved in hepatic metabolism and inflammatory and immune responses. The downregulated genes were mainly associated with stem cell characteristics (multipotent differentiation, cell cycle regulation, etc.). Confirmatory qRT-PCR of 9 upregulated and 9 downregulated genes with log2 fold changes > 5 showed similar results. In vivo transdifferentiation of hBMSCs in pigs with fulminant hepatic failure confirmed the similarly upregulated expression of 5 hepatogenic genes (TDO2, HP, SERPINA3, LBP and SAA1), showing a 150-fold change in liver tissues at 7 days after hBMSC transplantation. These 5 genes mainly contributed to liver metabolism and inflammation. Conclusion: hBMSC-HLCs possess a hepatic transcriptome profile and express hepatic-specific genes in vitro and in vivo, which might be useful for future clinical applications. The five upregulated genes identified herein could be potential biomarkers for the characterization of hBMSC-HLCs.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Perfilação da Expressão Gênica/métodos , Hepatócitos/citologia , Hepatócitos/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , RNA Mensageiro/metabolismo
12.
J Neuroimmune Pharmacol ; 14(3): 478-492, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31069623

RESUMO

Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons and excessive microglial activation in the substantia nigra pars compacta (SNpc). In the present study, we aimed to demonstrate the therapeutic effectiveness of the potent sphingosine-1-phosphate receptor antagonist fingolimod (FTY720) in an animal model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and to identify the potential mechanisms underlying these therapeutic effects. C57BL/6J mice were orally administered FTY720 before subcutaneous injection of MPTP. Open-field and rotarod tests were performed to determine the therapeutic effect of FTY720. The damage to dopaminergic neurons and the production of monoamine neurotransmitters were assessed using immunohistochemistry, high-performance liquid chromatography, and flow cytometry. Immunofluorescence (CD68- positive) and enzyme-linked immunosorbent assay were used to analyze the activation of microglia, and the levels of activated signaling molecules were measured using Western blotting. Our findings indicated that FTY720 significantly attenuated MPTP-induced behavioral deficits, reduced the loss of dopaminergic neurons, and increased dopamine release. FTY720 directly inhibited MPTP-induced microglial activation in the SNpc, suppressed the production of interleukin (IL)-6, IL-1ß, and tumor necrosis factor-α in BV-2 microglial cells treated with 1-methyl-4-phenylpyridinium (MPP+), and subsequently decreased apoptosis in SH-SY5Y neuroblastoma cells. Moreover, in MPP+-treated BV-2 cells and primary microglia, FTY720 treatment significantly attenuated the increases in the phosphorylation of PI3K/AKT/GSK-3ß, reduced ROS generation and p65 activation, and also inhibited the activation of NLRP3 inflammasome and caspase-1. In conclusion, FTY720 may reduce PD progression by inhibiting NLRP3 inflammasome activation via its effects on ROS generation and p65 activation in microglia. These findings provide novel insights into the mechanisms underlying the therapeutic effects of FTY720, suggesting its potential as a novel therapeutic strategy against PD. Graphical Abstract FTY720 may reduce ROS production by inhibiting the PI3K/AKT/GSK-3ß signaling pathway, while at the same time reducing p65 phosphorylation, thus decreasing NLRP3 inflammasome activation through these two pathways, ultimately reducing microglia activation-induced neuronal damage.


Assuntos
Antiparkinsonianos/farmacologia , Cloridrato de Fingolimode/farmacologia , Inflamassomos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Corpo Estriado/química , Corpo Estriado/efeitos dos fármacos , Citocinas/biossíntese , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Avaliação Pré-Clínica de Medicamentos , Comportamento Exploratório/efeitos dos fármacos , Inflamassomos/metabolismo , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transtornos Parkinsonianos/imunologia , Parte Compacta da Substância Negra/química , Parte Compacta da Substância Negra/efeitos dos fármacos , Parte Compacta da Substância Negra/patologia , Espécies Reativas de Oxigênio , Teste de Desempenho do Rota-Rod , Transdução de Sinais/efeitos dos fármacos
13.
Gut ; 68(11): 2044-2056, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30700543

RESUMO

OBJECTIVE: Developing a small animal model that accurately delineates the natural history of hepatitis B virus (HBV) infection and immunopathophysiology is necessary to clarify the mechanisms of host-virus interactions and to identify intervention strategies for HBV-related liver diseases. This study aimed to develop an HBV-induced chronic hepatitis and cirrhosis mouse model through transplantation of human bone marrow mesenchymal stem cells (hBMSCs). DESIGN: Transplantation of hBMSCs into Fah-/-Rag2-/-IL-2Rγc-/- SCID (FRGS) mice with fulminant hepatic failure (FHF) induced by hamster-anti-mouse CD95 antibody JO2 generated a liver and immune cell dual-humanised (hBMSC-FRGS) mouse. The generated hBMSC-FRGS mice were subjected to assessments of sustained viremia, specific immune and inflammatory responses and liver pathophysiological injury to characterise the progression of chronic hepatitis and cirrhosis after HBV infection. RESULTS: The implantation of hBMSCs rescued FHF mice, as demonstrated by robust proliferation and transdifferentiation of functional human hepatocytes and multiple immune cell lineages, including B cells, T cells, natural killer cells, dendritic cells and macrophages. After HBV infection, the hBMSC-FRGS mice developed sustained viremia and specific immune and inflammatory responses and showed progression to chronic hepatitis and liver cirrhosis at a frequency of 55% after 54 weeks. CONCLUSION: This new humanised mouse model recapitulates the liver cirrhosis induced by human HBV infection, thus providing research opportunities for understanding viral immune pathophysiology and testing antiviral therapies in vivo.


Assuntos
Modelos Animais de Doenças , Hepatite B Crônica/etiologia , Cirrose Hepática/etiologia , Transplante de Células-Tronco Mesenquimais , Animais , Hepatite B Crônica/patologia , Humanos , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID
14.
Biochim Biophys Acta Mol Basis Dis ; 1864(11): 3824-3836, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30251698

RESUMO

Sphingosine kinases (Sphks) are the rate-limiting enzymes in the conversion of sphingosine to biologically active sphingosine-1-phosphate. The present study aimed to determine the role of Sphk2 and its downstream targets in renal fibroblast activation and interstitial fibrosis. In the kidney interstitium of patients with renal fibrosis, Sphk2high-expressing cells (mainly interstitial fibroblasts) were significantly elevated and highly correlated with disease progression in patients. In a murine model of renal interstitial fibrosis, Sphk2 was upregulated in the kidney of wild-type mice in response to disease progression. Importantly, Sphk2-knockout (KO) mice exhibited significantly lower levels of extracellular matrix (ECM) production and a suppressed inflammatory response in the kidney tissues, compared to those in their wild-type counterparts, whereas the expression of TGF-ß1 was unaffected. TGF-ß1 effectively upregulated Sphk2 expression in the renal interstitial fibroblast line, NRK-49F, independent of canonical Smad signaling activation. Furthermore, siRNA-mediated Sphk2 knockdown or suppression of Sphk2 activity by ABC294640 exposure effectively attenuated AKT and STAT3 activation and ECM production, but had no effects on Smad2 and Smad3 activation. Sphk2 phosphorylated Fyn to activate downstream STAT3 and AKT, thereby promoting ECM synthesis. Therefore, our findings indicate that targeting Sphk2-Fyn-STAT3/AKT signaling pathway may be a novel therapeutic approach for renal fibrosis.


Assuntos
Fibroblastos/imunologia , Rim/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Insuficiência Renal Crônica/patologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Matriz Extracelular/imunologia , Matriz Extracelular/patologia , Fibroblastos/patologia , Fibrose , Células HEK293 , Humanos , Rim/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Insuficiência Renal Crônica/imunologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/imunologia , Fator de Crescimento Transformador beta1/imunologia , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
15.
Mol Cell Endocrinol ; 470: 38-47, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28736254

RESUMO

Bisphenol A (BPA), an environmental endocrine-disrupting organic chemical, has been positively associated with the rate of implantation failure of in vitro fertilization. However, the underlying mechanisms remain unclear. To reveal the impact and the underlying mechanism of BPA on the crosstalk between trophoblast and decidual stromal cells (DSCs), we determined whether BPA was able to affect trophoblast invasion in vitro. We found that BPA significantly inhibited CXCL8 expression in DSCs, which hindered trophoblast invasion, and activated the phosphorylation of ERK in DSCs. U0126, an inhibitor of ERK activation, remarkably rescued trophoblast invasion and the inhibition of CXCL8 expression caused by BPA treatment. Moreover, the nuclear estrogen receptor antagonist ICI 182,780 and transmembrane G protein-coupled receptor GPR30 (membrane estrogen receptor) antagonist G15 significantly blocked the phosphorylation of ERK and reversed the reduction of trophoblast invasion. In brief, BPA activated ERK through nuclear and membrane estrogen receptors and inhibited CXCL8 expression in DSCs, thereby affecting their regulation of trophoblast invasion.


Assuntos
Compostos Benzidrílicos/toxicidade , Movimento Celular/efeitos dos fármacos , Decídua/patologia , Interleucina-8/genética , Fenóis/toxicidade , Trofoblastos/patologia , Adulto , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-8/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/patologia , Trofoblastos/efeitos dos fármacos , Adulto Jovem
16.
Gut ; 66(5): 955-964, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-26884426

RESUMO

OBJECTIVE: Stem cell transplantation provides a promising alternative for the treatment of fulminant hepatic failure (FHF). However, it lacks fundamental understanding of stem cells' activities. Our objective was to clarify stem cell-recipient interactions for overcoming barriers to clinical application. DESIGN: We used an in-house large-animal (pig) model of FHF rescue by human bone marrow mesenchymal stem cells (hBMSCs) and profiled the cells' activities. The control and transplantation groups of pigs (n=15 per group) both received a D-galactosamine (D-Gal) injection (1.5 g/kg). The transplantation group received hBMSCs via intraportal vein infusion (3×106 cells/kg) immediately after D-Gal administration. The stem cell-recipient interactions were quantitatively evaluated by biochemical function, cytokine array, metabolite profiling, transcriptome sequencing and immunohistochemistry. RESULTS: All pigs in the control group died within an average of 3.22 days, whereas 13/15 pigs in the transplantation group lived >14 days. The cytokine array and metabolite profiling analyses revealed that hBMSC transplantation suppressed D-Gal-induced life-threatening cytokine storms and stabilised FHF within 7 days, while human-derived hepatocytes constituted only ∼4.5% of the pig hepatocytes. The functional synergy analysis of the observed profile changes indicated that the implanted hBMSCs altered the pigs' cytokine responses to damage through paracrine effects. Delta-like ligand 4 was validated to assist liver restoration in both pig and rat FHF models. CONCLUSIONS: Our results delineated an integrated model of the multifaceted interactions between stem cells and recipients, which may open a new avenue to the discovery of single molecule-based therapeutics that simulate stem cell actions.


Assuntos
Transplante de Medula Óssea , Citocinas/sangue , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/terapia , Proteínas de Membrana/metabolismo , Transplante de Células-Tronco Mesenquimais , Animais , Modelos Animais de Doenças , Galactosamina/farmacologia , Hepatócitos , Humanos , Fígado/patologia , Falência Hepática Aguda/patologia , Masculino , Comunicação Parácrina , Ratos , Ratos Sprague-Dawley , Taxa de Sobrevida , Suínos
17.
J Neuroinflammation ; 13: 23, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26822321

RESUMO

BACKGROUND: The complement system is becoming increasingly recognized as a key participant in many neurodegenerative diseases of the brain. Complement-deficient animals exhibit reduced neuroinflammation. METHODS: In the present study, we administered intracerebroventricularly lipopolysaccharide (LPS) to mimic local infection of the brain and investigated the role of key complement component C3 in brain vasculature endothelial activation and leukocyte recruitment. The degree of neutrophil infiltration was determined by esterase staining. Leukocyte-endothelial interactions were measured using intravital microscopy. Cerebral endothelial activation was evaluated using real-time PCR and Western blotting. RESULTS: Neutrophil infiltration into the brain cortex and hippocampus was significantly reduced in C3(-/-) mice and C3aR(-/-) mice but not in C6(-/-) mice. We detected markedly attenuated leukocyte-endothelial interactions in the brain microvasculature of C3(-/-) mice. Accordingly, in response to LPS administration, the brain microvasculature in these mice had decreased expression of P-selectin, E-selectin, intercellular cell adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1). Depletion of C3 from the circulation also caused reduction in VCAM-1 and E-selectin expression and leukocyte recruitment, suggesting that C3 in the circulation contributed to brain endothelial activation. Furthermore, C3(-/-) mice exhibited decreased leukocyte recruitment into the brain upon tumor necrosis factor-α (TNF-α) stimulation. C3a activated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) and induced the upregulation of VCAM-1 and ICAM-1 expression in murine primary cerebral endothelial cells in vitro. CONCLUSIONS: Our study provides the first evidence that C3a plays a critical role in cerebral endothelial activation and leukocyte recruitment during inflammation in the brain.


Assuntos
Encéfalo/citologia , Complemento C3a/metabolismo , Células Endoteliais/fisiologia , Leucócitos/fisiologia , Infiltração de Neutrófilos/fisiologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiologia , Encéfalo/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Complemento C3a/genética , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Injeções Intraventriculares , Leucócitos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microvasos/efeitos dos fármacos , Microvasos/fisiologia , NF-kappa B/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Receptores de Complemento/deficiência , Receptores de Complemento/genética , Fatores de Tempo
18.
Cell Signal ; 28(3): 148-156, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26658093

RESUMO

Infection in male and female genital tracts can lead to infertility. The underlying mechanisms of this process remain unclear. Toll-like receptors (TLRs) recognize conserved structures and respond to pathogens by initiating signals that activate inflammatory gene transcription. Here, we demonstrate that TLR activation in sperm reduces sperm motility via signalling through myeloid differentiation factor 88 (MyD88), phosphatidylinositol 3-kinase (PI3K), and glycogen synthase kinase (GSK)-3α. Upon TLR activation, phosphorylated forms of PI3K and GSK3α were detected in the mitochondria, and the mitochondrial membrane potential was impaired in sperm. In addition, mitochondrial ATP levels were decreased after TLR agonist stimulation. Furthermore, blocking PI3K or GSK3α activation abrogated these effects and reversed the TLR-induced reduction in sperm motility. These results identify a previously unrecognized TLR signalling pathway that leads to dysfunctional sperm mitochondria, which reduce sperm motility. Our study reveals a novel mechanism by which pathogenic infection affects sperm motility and possibly leads to infertility.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Espermatozoides/metabolismo , Receptores Toll-Like/metabolismo , Trifosfato de Adenosina/metabolismo , Androstadienos/farmacologia , Animais , Feminino , Humanos , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fosfatidilinositol 3-Quinase/genética , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Receptores Toll-Like/agonistas , Wortmanina , Zimosan/farmacologia
19.
J Neuroinflammation ; 12: 98, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25990934

RESUMO

BACKGROUND: Chemokines and chemokine receptors cooperate to promote immune cell recruitment to the central nervous system (CNS). In this study, we investigated the roles of CXCR2 and CXCL1 in leukocyte recruitment to the CNS using a murine model of neuroinflammation. METHODS: Wild-type (WT), CXCL1(-/-), and CXCR2(-/-) mice each received an intracerebroventricular (i.c.v.) injection of lipopolysaccharide (LPS). Esterase staining and intravital microscopy were performed to examine neutrophil recruitment to the brain. To assess endothelial activation in these mice, the expression of adhesion molecules was measured via quantitative real-time polymerase chain reaction (PCR) and Western blotting. To identify the cellular source of functional CXCR2, chimeric mice were generated by transferring bone marrow cells between the WT and CXCR2(-/-) mice. RESULTS: Expression levels of the chemokines CXCL1, CXCL2, and CXCL5 were significantly increased in the brain following the i.c.v. injection of LPS. CXCR2 or CXCL1 deficiency blocked neutrophil infiltration and leukocyte recruitment in the cerebral microvessels. In the CXCR2(-/-) and CXCL1(-/-) mice, the cerebral endothelial expression of adhesion molecules such as P-selectin and VCAM-1 was dramatically reduced. Furthermore, the bone marrow transfer experiments demonstrated that CXCR2 expression on CNS-residing cells is essential for cerebral endothelial activation and leukocyte recruitment. Compared with microglia, cultured astrocytes secreted a much higher level of CXCL1 in vitro. Astrocyte culture conditioned medium significantly increased the expression of VCAM-1 and ICAM-1 in cerebral endothelial cells in a CXCR2-dependent manner. Additionally, CXCR2 messenger RNA (mRNA) expression in cerebral endothelial cells but not in microglia or astrocytes was increased following tumor necrosis factor-α (TNF-α) stimulation. The intravenous injection of the CXCR2 antagonist SB225002 significantly inhibited endothelial activation and leukocyte recruitment to cerebral microvessels. CONCLUSIONS: CXCL1 secreted by astrocytes and endothelial CXCR2 play essential roles in cerebral endothelial activation and subsequent leukocyte recruitment during neuroinflammation.


Assuntos
Encefalite/patologia , Endotélio/metabolismo , Leucócitos/metabolismo , Receptores de Interleucina-8B/metabolismo , Albuminas/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Quimiocina CXCL1/deficiência , Quimiocina CXCL1/genética , Quimiocina CXCL5/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite/induzido quimicamente , Endotélio/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Compostos de Fenilureia/farmacologia , Receptores de Interleucina-8B/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
20.
Liver Int ; 35(10): 2301-10, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25645195

RESUMO

BACKGROUND & AIMS: Human bone marrow mesenchymal stem cell (hBMSC) transplantation is expected to become an alternative regenerative technique for liver diseases. However, the mechanism by which hBMSCs differentiate into hepatocytes is still unclear. The aim of this study was to establish the specific characteristics of hBMSC-derived hepatocytes (hBMSC-Heps) for future clinical applications. METHODS: Potential hBMSC-Hep biomarkers were screened using cytokine arrays. Significant biomarkers were then validated by enzyme-linked immunosorbent assay (ELISA) in vitro and in an in vivo xenotransplantation model in fulminant hepatic failure (FHF) pigs. RESULTS: After 20 days of differentiation, the expression levels of tissue inhibitor of metalloproteinases 4 (TIMP-4) and follistatin (FST) in functional hBMSC-Heps were significantly increased, whereas those of activin A, osteoprotegerin and platelet-derived growth factor α polypeptide (PDGF-A) were significantly decreased. The high levels of TIMP-4 and FST were validated by ELISA in hBMSC-Heps grown in differentiation medium. The in vivo xenotransplantation model in FHF pigs showed that the serum levels of TIMP-4 and FST were significantly increased 6 h after hBMSC transplantation and reached their highest levels at 24 and 48 h, respectively, after hBMSC transplantation. Immunohistochemistry confirmed that TIMP-4 and FST were expressed in cultured hBMSC-Heps and in implanted hBMSC-Heps in pig livers. CONCLUSIONS: The transdifferentiation of hBMSCs into hepatocytes is associated with the expression of TIMP-4 and FST. TIMP-4 and FST represent potential novel biomarkers for the characterisation of hBMSC-Heps and may be useful for future clinical applications.


Assuntos
Folistatina/metabolismo , Falência Hepática Aguda/terapia , Transplante de Células-Tronco Mesenquimais , Inibidores Teciduais de Metaloproteinases/metabolismo , Animais , Biomarcadores/sangue , Diferenciação Celular , Transdiferenciação Celular , Células Cultivadas , China , Modelos Animais de Doenças , Feminino , Folistatina/genética , Hepatócitos/metabolismo , Humanos , Falência Hepática Aguda/induzido quimicamente , Células-Tronco Mesenquimais , Suínos , Inibidores Teciduais de Metaloproteinases/genética , Transplante Heterólogo , Inibidor Tecidual 4 de Metaloproteinase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA