Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Plant Sci ; 4(11)2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27843725

RESUMO

PREMISE OF THE STUDY: Highly transferable expressed sequence tag (EST) microsatellites were developed for Panax ginseng (Araliaceae), one of the most celebrated traditional Chinese medicines and an endangered species in East Asia, using whole-genome data. METHODS AND RESULTS: Twenty-one EST microsatellites were characterized from next-generation sequencing and were composed of di- and trinucleotide repeats. Polymorphisms and genetic diversity were evaluated for 45 accessions of three ginseng landraces. The number of alleles for each locus ranged from one to five among the landraces, and the polymorphism information content varied from 0.0000 to 0.6450. These microsatellites were also tested for congeneric amplification with P. notoginseng, P. stipuleanatus, P. quinquefolius, P. bipinnatifidus, and the closely related species Aralia elata. CONCLUSIONS: These novel EST-derived microsatellite markers will facilitate further population genetic studies of the genera Panax and Aralia.

2.
BMC Plant Biol ; 15: 297, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26690782

RESUMO

BACKGROUND: Panax L. is a medicinally important genus within family Araliaceae, where almost all species are of cultural significance for traditional Chinese medicine. Previous studies suggested two independent origins of the East Asia and North America disjunct distribution of this genus and multiple rounds of whole genome duplications (WGDs) might have occurred during the evolutionary process. RESULTS: We employed multiple chloroplast and nuclear markers to investigate the evolution and diversification of Panax. Our phylogenetic analyses confirmed previous observations of the independent origins of disjunct distribution and both ancient and recent WGDs have occurred within Panax. The estimations of divergence time implied that the ancient WGD might have occurred before the establishment of Panax. Thereafter, at least two independent recent WGD events have occurred within Panax, one of which has led to the formation of three geographically isolated tetraploid species P. ginseng, P. japonicus and P. quinquefolius. Population genetic analyses showed that the diploid species P. notoginseng harbored significantly lower nucleotide diversity than those of the two tetraploid species P. ginseng and P. quinquefolius and the three species showed distinct nucleotide variation patterns at exon regions. CONCLUSION: Our findings based on the phylogenetic and population genetic analyses, coupled with the species distribution patterns of Panax, suggested that the two rounds of WGD along with the geographic and ecological isolations might have together contributed to the evolution and diversification of this genus.


Assuntos
Duplicação Gênica , Genoma de Cloroplastos , Panax/genética , Ecossistema , Evolução Molecular , Dados de Sequência Molecular , Filogenia , Dispersão Vegetal , Poliploidia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA