Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(26): e2403858, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704691

RESUMO

Cancer immunotherapy has demonstrated significant efficacy in various tumors, but its effectiveness in treating Hepatocellular Carcinoma (HCC) remains limited. Therefore, there is an urgent need to identify a new immunotherapy target and develop corresponding intervention strategies. Bioinformatics analysis has revealed that growth differentiation factor 15 (GDF15) is highly expressed in HCC and is closely related to poor prognosis of HCC patients. The previous study revealed that GDF15 can promote immunosuppression in the tumor microenvironment. Therefore, knocking out GDF15 through gene editing could potentially reverse the suppressive tumor immune microenvironment permanently. To deliver the CRISPR/Cas9 system specifically to HCC, nanocapsules (SNC) coated with HCC targeting peptides (SP94) on their surface is utilized. These nanocapsules incorporate disulfide bonds (SNCSS) that release their contents in the tumor microenvironment characterized by high levels of glutathione (GSH). In vivo, the SNCSS target HCC cells, exert a marked inhibitory effect on HCC progression, and promote HCC immunotherapy. Mechanistically, CyTOF analysis showed favorable changes in the immune microenvironment of HCC, immunocytes with killer function increased and immunocytes with inhibitive function decreased. These findings highlight the potential of the CRISPR-Cas9 gene editing system in modulating the immune microenvironment and improving the effectiveness of existing immunotherapy approaches for HCC.


Assuntos
Sistemas CRISPR-Cas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanocápsulas , Microambiente Tumoral , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/terapia , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Sistemas CRISPR-Cas/genética , Camundongos , Humanos , Animais , Imunoterapia/métodos , Modelos Animais de Doenças , Edição de Genes/métodos , Linhagem Celular Tumoral
2.
BMB Rep ; 57(2): 71-78, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38053295

RESUMO

Melanoma is one of the most aggressive skin tumors, and conventional treatment modalities are not effective in treating advanced melanoma. Although immunotherapy is an effective treatment for melanoma, it has disadvantages, such as a poor response rate and serious systemic immune-related toxic side effects. The main solution to this problem is the use of biological materials such as hydrogels to reduce these side effects and amplify the immune killing effect against tumor cells. Hydrogels have great advantages as local slow-release drug carriers, including the ability to deliver antitumor drugs directly to the tumor site, enhance the local drug concentration in tumor tissue, reduce systemic drug distribution and exhibit good degradability. Despite these advantages, there has been limited research on the application of hydrogels in melanoma treatment. Therefore, this article provides a comprehensive review of the potential application of hydrogels in melanoma immunotherapy. Hydrogels can serve as carriers for sustained drug delivery, enabling the targeted and localized delivery of drugs with minimal systemic side effects. This approach has the potential to improve the efficacy of immunotherapy for melanoma. Thus, the use of hydrogels as drug delivery vehicles for melanoma immunotherapy has great potential and warrants further exploration. [BMB Reports 2024; 57(2): 71-78].


Assuntos
Antineoplásicos , Melanoma , Humanos , Melanoma/tratamento farmacológico , Hidrogéis , Sistemas de Liberação de Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Imunoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA