RESUMO
Chronic inflammation is a constitutive component of many age-related diseases, including age-related macular degeneration (AMD). Here, we identified interleukin-1 receptor-associated kinase M (IRAK-M) as a key immunoregulator in retinal pigment epithelium (RPE) that declines during the aging process. Rare genetic variants of IRAK3, which encodes IRAK-M, were associated with an increased likelihood of developing AMD. In human samples and mouse models, IRAK-M abundance in the RPE declined with advancing age or exposure to oxidative stress and was further reduced in AMD. Irak3-knockout mice exhibited an increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M led to a disruption in RPE cell homeostasis, characterized by compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of adeno-associated virus (AAV)-expressing human IRAK3 rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in Irak3-knockout mice. Our data show that replenishment of IRAK-M in the RPE may redress dysregulated pro-inflammatory processes in AMD, suggesting a potential treatment for retinal degeneration.
Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Camundongos Knockout , Estresse Oxidativo , Degeneração Retiniana , Epitélio Pigmentado da Retina , Animais , Humanos , Masculino , Camundongos , Senescência Celular , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Degeneração Macular/genética , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/genética , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologiaRESUMO
SAFB1 is a DNA and RNA binding protein that is highly expressed in the cerebellum and hippocampus and is involved in the processing of coding and non-coding RNAs, splicing and dendritic function. We analyzed SAFB1 expression in the post-mortem brain tissue of spinocerebellar ataxia (SCA), Huntington's disease (HD), Multiple sclerosis (MS), Parkinson's disease patients and controls. In SCA cases, the expression of SAFB1 in the nucleus was increased and there was abnormal and extensive expression in the cytoplasm where it co-localized with the markers of Purkinje cell injury. Significantly, no SAFB1 expression was found in the cerebellar neurons of the dentate nucleus in control or MS patients; however, in SCA patients, SAFB1 expression was increased significantly in both the nucleus and cytoplasm of dentate neurons. In HD, we found that SAFB1 expression was increased in the nucleus and cytoplasm of striatal neurons; however, there was no SAFB1 staining in the striatal neurons of controls. In PD substantia nigra, we did not see any changes in neuronal SAFB1 expression. iCLIP analysis found that SAFB1 crosslink sites within ATXN1 RNA were adjacent to the start and within the glutamine repeat sequence. Further investigation found increased binding of SAFB1 to pathogenic ATXN1-85Q mRNA. These novel data strongly suggest SAFB1 contributes to the etiology of SCA and Huntington's chorea and that it may be a pathological marker of polyglutamine repeat expansion diseases.