Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 117: 315-325, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35725085

RESUMO

Many drinking water treatment plants in the U.S. have switched from chlorination to chloramination to lower levels of regulated trihalomethane (THM) and haloacetic acid (HAA) disinfection byproducts (DBPs) in drinking water and meet the current regulations. However, chloramination can also produce other highly toxic/carcinogenic, unregulated DBPs: iodo-acids, iodo-THMs, and N-nitrosodimethylamine (NDMA). In practice, chloramines are generated by the addition of chlorine with ammonia, and plants use varying amounts of free chlorine contact time prior to ammonia addition to effectively kill pathogens and meet DBP regulations. However, iodo-DBPs and nitrosamines are generally not considered in this balancing of free chlorine contact time. The goal of our work was to determine whether an optimal free chlorine contact time could be established in which iodo-DBPs and NDMA could be minimized, while keeping regulated THMs and HAAs below their regulatory limits. The effect of free chlorine contact time was evaluated for the formation of six iodo-trihalomethanes (iodo-THMs), six iodo-acids, and NDMA during the chloramination of drinking water. Ten different free chlorine contact times were examined for two source waters with different dissolved organic carbon (DOC) and bromide/iodide. For the low DOC water at pH 7 and 8, an optimized free chlorine contact time of up to 1 h could control regulated THMs and HAAs, as well as iodo-DBPs and NDMA. For the high DOC water, a free chlorine contact time of 5 min could control iodo-DBPs and NDMA at both pHs, but the regulated DBPs could exceed the regulations at pH 7.


Assuntos
Desinfetantes , Água Potável , Iodo , Poluentes Químicos da Água , Amônia , Cloro , Dimetilnitrosamina , Desinfecção , Trialometanos/análise , Poluentes Químicos da Água/análise
2.
Metabolomics ; 18(5): 27, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35482254

RESUMO

INTRODUCTION: Determining the biological significance of pteridines in cancer development and progression remains an important step in understanding the altered levels of urinary pteridines seen in certain cancers. Our companion study revealed that several folate-derived pteridines and lumazines correlated with tumorigenicity in an isogenic, progressive breast cancer cell model, providing direct evidence for the tumorigenic origin of pteridines. OBJECTIVES: This study sought to elucidate the pteridine biosynthetic pathway in a progressive breast cancer model via direct pteridine dosing to determine how pteridine metabolism changes with tumorigenicity. METHODS: First, MCF10AT breast cancer cells were dosed individually with 15 pteridines to determine which pteridines were being metabolized and what metabolic products were being produced. Second, pteridines that were significantly metabolized were dosed individually across the progressive breast cancer cell model (MCF10A, MCF10AT, and MCF10ACA1a) to determine the relationship between each metabolic reaction and breast cancer tumorigenicity. RESULTS: Several pteridines were found to have altered metabolism in breast cancer cell lines, including pterin, isoxanthopterin, xanthopterin, sepiapterin, 6-biopterin, lumazine, and 7-hydroxylumazine (p < 0.05). In particular, isoxanthopterin and 6-biopterin concentrations were differentially expressed (p < 0.05) with respect to tumorigenicity following dosing with pterin and sepiapterin, respectively. Finally, the pteridine biosynthetic pathway in breast cancer cells was proposed based on these findings. CONCLUSIONS: This study, along with its companion study, demonstrates that pteridine metabolism becomes disrupted in breast cancer tumor cells. This work highlights several key metabolic reactions within the pteridine biosynthetic pathway that may be targeted for further investigation and clinical applications.


Assuntos
Neoplasias da Mama , Biopterinas , Neoplasias da Mama/urina , Feminino , Humanos , Metabolômica , Pteridinas/metabolismo , Pterinas
3.
Anal Bioanal Chem ; 414(9): 3077-3086, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35122141

RESUMO

Silver nanoparticles (AgNPs) have been used in many fields due to their anticancer, antimicrobial, and antiviral potential. Single-cell ICP-MS (SC-ICP-MS) is an emerging technology that allows for the rapid characterization and quantification of a metal analyte across a cell population in a single analysis. In this study, a new rapid and sensitive SC-ICP-MS method was developed to quantitatively study the interactions of AgNPs with yeast Saccharomyces cerevisiae. The method can quantify the cell concentration, silver concentration per cell, and profile the nanoparticle distribution in a yeast cell population. AgNP dosing time, concentration, and AgNP size were quantitatively evaluated for their effects on AgNP-yeast cell interactions. The results showed that the initial uptake of AgNPs was rapid and primarily driven by the mass of Ag per cell. The optimal dosing particle concentrations for highest uptake were approximately 1820, 1000, and 300 AgNPs/cell for 10, 20, and 40 nm AgNPs, respectively. Furthermore, this study also validated a washing method for the application to a microorganism for the first time and was used to quantitatively determine the amount of cell surface-adsorbed AgNPs and intracellular AgNPs. These results indicated that the mass (Ag in ag/cell) ratios of intracelluar vs cell surface-adsorbed AgNPs were similar for different AgNP sizes. This high throughput and ultrasensitive SC-ICP-MS method is expected to have many potential applications, such as optimization of methods for green synthesis of AgNPs, nanotoxicity studies, and drug delivery. This is the first quantification study on the interactions of AgNPs and S. cerevisiae using SC-ICP-MS.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanopartículas Metálicas/análise , Tamanho da Partícula , Saccharomyces cerevisiae , Prata/análise , Análise Espectral
4.
Metabolomics ; 18(1): 2, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34919200

RESUMO

INTRODUCTION: Pteridines include folate-derived metabolites that have been putatively associated with certain cancers in clinical studies. However, their biological significance in cancer metabolism and role in cancer development and progression remains poorly understood. OBJECTIVES: The purpose of this study was to examine the effects of tumorigenicity on pteridine metabolism by studying a panel of 15 pteridine derivatives using a progressive breast cancer cell line model with and without folic acid dosing. METHODS: The MCF10A progressive breast cancer model, including sequentially derived MCF10A (benign), MCF10AT (premalignant), and MCF10CA1a (malignant) cell lines were dosed with 0, 100, and 250 mg/L folic acid. Pteridines were analyzed in both intracellular and extracellular contexts using an improved high-performance liquid chromatography-tandem mass spectrometry method. RESULTS: Pteridines were located predominately in the extracellular media. Folic acid dosing increased extracellular levels of pterin, 6-hydroxylumazine, xanthopterin, 6-hydroxymethylpterin, and 6-carboxypterin in a dose-dependent manner. In particular, pterin and 6-hydroxylumazine levels were positively correlated with tumorigenicity upon folate dosing. CONCLUSIONS: Folic acid is a primary driver for pteridine metabolism in human breast cell. Higher folate levels contribute to increased formation and excretion of pteridine derivatives to the extracellular media. In breast cancer, this metabolic pathway becomes dysregulated, resulting in the excretion of certain pteridine derivatives and providing in vitro evidence for the observation of elevated pteridines in the urine of breast cancer patients. Finally, this study reports a novel use of the MCF10A progressive breast cancer model for metabolomics applications that may readily be applied to other metabolites of interest.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/patologia , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Humanos , Metabolômica , Pteridinas/urina
5.
Anal Biochem ; 629: 114295, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34186074

RESUMO

Oxidative stress is reported to be part of the pathology of many ocular diseases. For the diagnosis of ocular diseases, tear fluid has unique advantages. Although numerous analytical methods exist for the measurement of different types of biomolecules in tear fluid, few have been reported for comprehensive understanding of oxidative stress-related thiol redox signaling. In this study, a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed to determine a panel of twelve metabolites that systematically covered several thiol metabolic pathways. With optimization of MS/MS parameters and HPLC mobile phases, this method was sensitive (LOQ as low as 0.01 ng/ml), accurate (80-125% spike recovery) and precise (<10% RSD). This LC-MS/MS method combined with a simple tear fluid collection with Schirmer test strip followed by ultrafiltration allowed the high-throughput analysis for efficient determination of metabolites associated with thiol redox signaling in human tear fluids. The method was then applied to a small cohort of tear fluids obtained from healthy individuals. The method presented here provides a new technique to facilitate future work aiming to determine the complex thiol redox signaling in tear fluids for accurate assessment and diagnosis of ocular diseases.


Assuntos
Biomarcadores/química , Compostos de Sulfidrila/química , Lágrimas/química , Cromatografia Líquida de Alta Pressão , Glutationa/química , Humanos , Limite de Detecção , Oxirredução , Estresse Oxidativo , Espectrometria de Massas em Tandem
6.
Antioxidants (Basel) ; 11(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35052528

RESUMO

Oxidative stress may contribute to the pathology of many diseases, and endogenous thiols, especially glutathione (GSH) and its metabolites, play essential roles in the maintenance of normal redox status. Understanding how these metabolites change in response to oxidative insult can provide key insights into potential methods of prevention and treatment. Most existing methodologies focus only on the GSH/GSH disulfide (GSSG) redox couple, but GSH regulation is highly complex and depends on several pathways with multiple redox-active sulfur-containing species. In order to more fully characterize thiol redox status in response to oxidative insult, a high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) method was developed to simultaneously determine seven sulfur-containing metabolites, generating a panel that systematically examines several pathways involved in thiol metabolism and oxidative stress responses. The sensitivity (LOQ as low as 0.01 ng/mL), accuracy (88-126% spike recovery), and precision (≤12% RSD) were comparable or superior to those of existing methods. Additionally, the method was used to compare the baseline thiol profiles and oxidative stress responses of cell lines derived from different tissues. The results revealed a previously unreported response to oxidative stress in lens epithelial (B3) cells, which may be exploited as a new therapeutic target for oxidative-stress-related ocular diseases. Further application of this method may uncover new pathways involved in oxidative-stress-related diseases and endogenous defense mechanisms.

7.
Med Devices Sens ; 3(3)2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33073180

RESUMO

Intracellular pH plays critical roles in cell and tissue functions during processes such as metabolism, proliferation, apoptosis, ion transportation, endocytosis, muscle contraction and so on. It is thus an important biomarker that can readily be used to monitor the physiological status of a cell. Thus, disrupted intracellular pH may serve as an early indicator of cell dysfunction and deterioration. Various methods have been developed to detect cellular pH, such as pH-sensitive labeling reagents with fluorescent or Raman signals. However, excessive cellular uptake of these reagents will not only disrupt cell viability but also compromise effective long-term monitoring. Here, we present a novel fiber-optic fluorescent nanoprobe with a high spatial resolution for label-free, subcellular pH sensing. The probe has a fast response time (~20 seconds) with minimum invasiveness and excellent pH resolution (0.02 pH units) within a biologically relevant pH environment ranging from 6.17 to 8.11. Its applicability was demonstrated on cultured A549 lung cancer cells, and its efficacy was further testified in two typical cytotoxic cases using carbonylcyanide 3-chlorophenyl hydrazine, titanium dioxide, and nanoparticles. The probe can readily detect the pH variations among cells under toxin/nanoparticles administration, enabling direct monitoring of the early onset of physiological or pathological events with high spatiotemporal resolution. This platform has excellent promise as a minimum invasive diagnostic tool for pH-related cellular mechanism studies, such as inflammation, cytotoxicity, drug resistance, carcinogenesis, stem cell differentiation and so on.

8.
Anal Bioanal Chem ; 412(4): 833-840, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31872274

RESUMO

Accurate determination of the drug-to-antibody ratio (DAR) of interchain cysteine-linked antibody-drug conjugates (ADCs) is challenging. High-resolution mass spectrometry (HRMS) analysis of the ADCs at the intact or subunit level provides a feasible way to measure the DAR. However, the measured DAR is usually lower than the true DAR because of the variation in ionization efficiency between different DAR species. In this work, we developed a novel standard-free HRMS method involving isotope-labeled payload conjugation, protease digestion, and liquid chromatography-HRMS (LC-HRMS) analysis for accurate determination of the DAR of the interchain cysteine-linked ADCs with cleavable or non-cleavable linkers. Isotope-labeled payload conjugations eliminated the structural and chemical differences between different DAR species and ensured that the drugs or payload-containing peptides could be separated from each other in the mass spectrometer. A papain digestion strategy for ADCs with cleavable linkers showed a DAR of 3.79, with a relative standard deviation (RSD) of 0.48 (n = 3). Similarly, the trypsin and chymotrypsin digestion strategy that is applicable to ADCs with non-cleavable linkers showed a DAR of 3.77 and an RSD of 0.86 (n = 3). The DAR determined by this method was consistent with the DAR of the ADCs that was measured by the UV/Vis method. This method will be very useful to researchers working in the field of ADC discovery and development. Graphical abstract.


Assuntos
Cisteína/química , Imunoconjugados/química , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Subunidades Proteicas/química , Proteólise
9.
Anal Chem ; 91(13): 8558-8563, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31247726

RESUMO

Interchain cysteine linked antibody-drug conjugates (ADCs) are emerging therapeutic products that antagonize cancers. The toxic payloads are selectively linked to the interchain cysteines and generate heterogeneous mixtures of positional isomers. These positional isomers might contribute differently to the therapeutic efficacy because of the variation in conjugation stability, and thus they need to be well characterized. However, the characterization of the positional isomers of interchain cysteine linked ADCs is very challenging, mainly because of the high similarity between those isomers. In this research, we developed a novel mass spectrometry method for the characterization of positional isomers of interchain cysteine linked ADCs. The subunit analysis and the bottom-up analysis provided abundant information about the drug numbers and drug linking positions on each chain. Because the method can provide accurate data on drug linking numbers and positions on each chain, it will be very useful for researchers in cancer drug development and cancer treatment.


Assuntos
Anticorpos Monoclonais/química , Cromatografia Líquida de Alta Pressão/métodos , Cisteína/química , Imunoconjugados/química , Espectrometria de Massas/métodos , Preparações Farmacêuticas/química , Humanos
10.
Environ Sci Nano ; 6: 1876-1894, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32704375

RESUMO

Nanomaterials (NM) are incorporated into polymers to enhance their properties. However, there are a limited number of studies on the aging of these nanocomposites and the resulting potential release of NM. To characterize NM at critical points in their life cycles, polypropylene (PP) and multiwall carbon nanotube filled PP (PP-MWCNT) plates with different thicknesses (from 0.25 mm to 2 mm) underwent accelerated weathering in a chamber that simulates solar irradiation and rainfall. The physicochemical changes of the plates depended on the radiation exposure, the plate thickness, and the presence of CNT fillers. Photodegradation increased with aging time, making the exposed surface more hydrophilic, decreasing the surface hardness and creating surface stress-cracks. Aged surface and cross-section showed crazing due to the polymer bond scission and the formation of carbonyls. The degradation was higher near the UV-exposed surface as the intensity of the radiation and oxygen diffusion decreased with increasing depth of the plates, resulting in an oxidation layer directly proportional to oxygen diffusion. Thus, sample thickness determines the kinetics of the degradation reaction and the transport of reactive species. Plastic fragments, which are less than 1 mm, and free CNTs were released from weathered MWCNT-PP. The concentrations of released NM that were estimated using ICP-MS, increased with prolonged aging time. Various toxicity tests, including reactive oxygen species generation and cell activity/viability, were performed on the released CNTs. The toxicity of the released fragments and CNTs to A594 adenocarcinomic human alveolar basal epithelial cells was observed. The released polymer fragments and CNTs did not show significant toxicity under the experimental conditions in this study. This study will help manufacturers, users of consumer products with nanocomposites and policymakers in the development of testing guidelines, predictive models, and risk assessments and risk based-formulations of NM exposure.

11.
FEBS Open Bio ; 8(1): 94-109, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321960

RESUMO

miR-193a-3p is a tumor-related miRNA playing an essential role in tumorigenesis and progression of non-small cell lung cancer (NSCLC). The objective of the present study was to investigate the relationship between miR-193a-3p expression and clinical value and to further explore the potential signaling of miR-193a-3p in the carcinogenesis of NSCLC. RNA-sequencing and microarray data were collected from the databases GEO, ArrayExpress and The Cancer Genome Atlas (TCGA). Furthermore, in silico assessments were performed to analyze the prospective pathways and networks of the target genes of miR-193a-3p. In total, 453 cases of NSCLC patients and 476 normal controls were included in blood samples, while 920 cases of NSCLC patients and 406 normal controls were included in tissue samples. The pooled positive likelihood ratio, the pooled negative likelihood ratio and the pooled diagnostic odds ratio were calculated to reflect the diagnostic value of miR-193a-3p in blood and tissue samples. Moreover, the areas under the curve of the summary receiver operating characteristic curve of blood and tissue were 0.64 and 0.79, respectively. In addition, we found a lower level of miR-193a in NSCLC tissues than in non-cancerous controls based on TCGA. A gene ontology (GO) enrichment analysis demonstrated that miR-193a-3p could be related to key signaling pathways in NSCLC. Also, several vital pathways were illustrated by KEGG. Lower expression of miR-193a-3p in tissue samples of NSCLC may be associated with tumorigenesis and be a predictor of deterioration of NSCLC patients, and pathway analysis revealed crucial signaling pathways correlated with the incidence and progress of NSCLC.

12.
Sens Actuators B Chem ; 241: 398-405, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28533632

RESUMO

Biological studies of tissues and cells have enabled numerous discoveries, but these studies still bear potential risks of invalidation because of cell heterogeneity. Through high-accuracy techniques, recent studies have demonstrated that discrepancies do exist between the results from low-number-cell studies and cell-population-based results. Thus the urgent need to re-evaluate key principles on limited number of cells has been provoked. In this study, a novel designed dual-core fiber-optic pH micro-probe was fabricated and demonstrated for niche environment pH sensing with high spatial resolution. An organic-modified silicate (OrMoSils) sol-gel thin layer was functionalized by entrapping a pH indicator, 2', 7'-Bis (2-carbonylethyl)-5(6)-carboxyfluorescein (BCECF), on a ~70 µm sized probe tip. Good linear correlation between fluorescence ratio of I560 nm/I640 nm and intercellular pH values was obtained within a biological-relevant pH range from 6.20 to 7.92 (R2 = 0.9834), and with a pH resolution of 0.035 ± 0.005 pH units. The probe's horizontal spatial resolution was demonstrated to be less than 2mm. Moreover, the probe was evaluated by measuring the localized extracellular pH changes of cultured human lung cancer cells (A549) when exposed to titanium dioxide nanoparticles (TiO2 NPs). Results showed that the probe has superior capability for fast, local, and continual monitoring of a small cluster of cells, which provides researchers a fast and accurate technique to conduct local pH measurements for cell heterogeneity-related studies.

13.
Mater Sci Eng C Mater Biol Appl ; 73: 447-455, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28183631

RESUMO

Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses.


Assuntos
Boratos/farmacologia , Vidro/química , Reologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Íons , Espectrometria por Raios X , Difração de Raios X
14.
Clin Chim Acta ; 452: 142-8, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26585752

RESUMO

BACKGROUND: Urinary metallomics is presented here as a new "omics" approach that aims to facilitate personalized cancer screening and prevention by improving our understanding of urinary metals in disease. METHODS: Twenty-two urinary metals were examined with inductively-coupled plasma-mass spectrometry in 138 women newly diagnosed with breast cancer and benign conditions. Urinary metals from spot urine samples were adjusted to renal dilution using urine specific gravity. RESULTS: Two urinary metals, copper (P-value=0.036) and lead (P-value=0.003), were significantly increased in the urine of breast cancer patients. A multivariate model that comprised copper, lead, and patient age afforded encouraging discriminatory power (AUC: 0.728, P-value<0.0005), while univariate models of copper (61.7% sensitivity, 50.0% specificity) and lead (76.6% sensitivity, 51.2% specificity) at optimized cutoff thresholds compared favorably with other breast cancer diagnostic modalities such as mammography. Correlations found among various metals suggested potential geographic and dietary influences on the urine metallome that warrant further investigation. CONCLUSIONS: This proof-of-concept work introduces urinary metallomics as a noninvasive, potentially transformative "omics" approach to early cancer detection. Urinary copper and lead have also been preliminarily identified as potential breast cancer biomarkers.


Assuntos
Biomarcadores Tumorais/urina , Neoplasias da Mama/urina , Cobre/urina , Chumbo/urina , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Espectrometria de Massas , Pessoa de Meia-Idade
15.
Anal Chem ; 87(14): 7171-9, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26118725

RESUMO

Single-cell research is essential for understanding cell heterogeneity, cell differentiation, and carcinogenesis, among other important cellular processes. New techniques for intracellular pH monitoring are urgently needed to gain new insights into single-cell responses to external stimuli. In this study, fiber-optic reflection-based pH micro (µ)-probes (tip diameter: 500-3000 nm) were designed and fabricated using a novel hexagonal 1-in-6 fiber configuration. An organic-modified silicate (OrMoSils) sol-gel doped with a pH-sensitive dye, 2',7'-bis(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), were coated onto the probe sensing tip for pH detection. These probes enabled neutral pH monitoring and quasi-real-time data acquisition (response time: 20 ± 5 s). The fluorescence signals of the newly developed probes were found to correlate linearly with pH (R(2) = 0.9869 when coupling laser power was at 8.2 mW) within a biologically relevant pH range (6.18-7.80). The pH resolution was 0.038 pH unit. The miniaturized probes were validated in single human lung cancer A549 cells to demonstrate applicability in single-cell experiments. In summary, novel pH µ-probes with excellent resolution and response times within a biologically relevant pH range were developed, and they can be used for measuring pH changes in single cells.


Assuntos
Tecnologia de Fibra Óptica , Fluoresceínas/química , Compostos de Organossilício/química , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Eletrodos , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio
16.
Ecotoxicol Environ Saf ; 118: 55-61, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25910688

RESUMO

Effects of soil-arsenic (As), phosphorus and iron oxide on As accumulation in rice grain were investigated. Cultivars that have significantly different sensitivity to As, straighthead-resistant Zhe 733 and straighthead-susceptible Cocodrie, were used to represent different cultivar varieties. The grain accumulation of other elements of concern, selenium (Se), molybdenum (Mo), and cadmium (Cd) was also monitored. Results demonstrated that high soil-As not only resulted in high grain-As, but could also result in high grain-Se, and Zhe 733 had significantly less grain-As than Cocodrie did. However, soil-As did not impact grain-Mo and Cd. Among all elements monitored, iron oxide amendment significantly reduced grain-As for both cultivars, while the phosphate application only reduced grain-Se for Zhe 733. Results also indicated that cultivar type significantly impacted grain accumulation of all monitored trace elements. Therefore, applying iron oxide to As-contaminated land, in addition to choosing appropriate rice cultivar, can effectively reduce the grain accumulation of As.


Assuntos
Arsênio/metabolismo , Compostos Férricos/metabolismo , Fertilizantes/análise , Oryza/metabolismo , Fosfatos/metabolismo , Compostos Férricos/administração & dosagem , Metais/metabolismo , Oryza/efeitos dos fármacos , Fosfatos/administração & dosagem , Sementes/efeitos dos fármacos , Sementes/metabolismo , Selênio/metabolismo
17.
Environ Sci Pollut Res Int ; 22(11): 8594-602, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25561263

RESUMO

Perchlorate and bromate occurrence in drinking water causes health concerns due to their effects on thyroid function and carcinogenicity, respectively. The purpose of this study was threefold: (1) to advance a sensitive method for simultaneous rapid detection of perchlorate and bromate in drinking water system, (2) to systematically study the occurrence of these two contaminants in Missouri drinking water treatment systems, and (3) to examine effective sorbents for minimizing perchlorate in drinking water. A rapid high-performance ion exchange chromatography-tandem mass spectrometry (HPIC-MS/MS) method was advanced for simultaneous detection of perchlorate and bromate in drinking water. The HPIC-MS/MS method was rapid, required no preconcentration of the water samples, and had detection limits for perchlorate and bromate of 0.04 and 0.01 µg/L, respectively. The method was applied to determine perchlorate and bromate concentrations in total of 23 selected Missouri drinking water treatment systems during differing seasons. The water systems selected include different source waters: groundwater, lake water, river water, and groundwater influenced by surface water. The concentrations of perchlorate and bromate were lower than or near to method detection limits in most of the drinking water samples monitored. The removal of perchlorate by various adsorbents was studied. A cationic organoclay (TC-99) exhibited effective removal of perchlorate from drinking water matrices.


Assuntos
Bromatos/análise , Água Potável/química , Percloratos/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Bromatos/isolamento & purificação , Cromatografia por Troca Iônica/métodos , Monitoramento Ambiental/métodos , Monitoramento Ambiental/estatística & dados numéricos , Missouri , Espectrometria de Massas em Tandem/métodos , Difração de Raios X
18.
Talanta ; 131: 736-41, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25281166

RESUMO

N-Nitrosamines are potent mutagenic and carcinogenic emerging water disinfection by-products (DBPs). The most effective strategy to control the formation of these DBPs is minimizing their precursors from source water. Secondary and tertiary amines are dominating precursors of N-nitrosamines formation during drinking water disinfection process. Therefore, the screening and removal of these amines in source water are very essential for preventing the formation of N-nitrosamines. A rapid, simple, and sensitive ultrafast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method has been developed in this study to determine seven amines, including dimethylamine, ethylmethylamine, diethylamine, dipropylamine, trimethylamine, 3-(dimethylaminomethyl)indole, and 4-dimethylaminoantipyrine, as major precursors of N-nitrosamines in drinking water system. No sample preparation process is needed except a simple filtration. Separation and detection can be achieved in 11 min per sample. The method detection limits of selected amines are ranging from 0.02 µg/L to 1 µg/L except EMA (5 µg/L), and good calibration linearity was achieved. The developed method was applied to determine the selected precursors in source water and drinking water samples collected from Midwest area of the United States. In most of water samples, the concentrations of selected precursors of N-nitrosamines were below their method detection limits. Dimethylamine was detected in some of water samples at the concentration up to 25.4 µg/L.


Assuntos
Aminas/análise , Cromatografia Líquida/métodos , Nitrosaminas/análise , Espectrometria de Massas em Tandem/métodos , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Aminas/toxicidade , Desinfecção/métodos , Água Potável , Nitrosaminas/toxicidade , Purificação da Água/métodos
19.
Clin Chim Acta ; 438: 415-7, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25245674

RESUMO

We really appreciate the comments from Drs. Reibnegger and Fuchs regarding our recent publication "Normalization of urinary pteridines by urine specific gravity for early cancer detection [Clin. Chim. Acta 435 (2014) 42-47]". In their letter, Drs. Reibnegger and Fuchs identify several potential concerns regarding our recent publication [1] that evaluated the normalization performance of urine specific gravity (USG) and urinary creatinine with respect to the diagnostic properties of selected pteridines in discerning aggressive and benign breast cancers. Their letter not only provides unique insights that are both relevant and helpful to many researchers engaging in similar studies, but also provides a wonderful opportunity for us to address these potential concerns that may also be shared by other readers. We addressed all of the comments by Drs. Reibnegger and Fuchs in this letter.


Assuntos
Detecção Precoce de Câncer/métodos , Detecção Precoce de Câncer/normas , Pteridinas/urina , Urinálise/métodos , Urinálise/normas , Urina/química , Feminino , Humanos
20.
Clin Chim Acta ; 435: 42-7, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24792383

RESUMO

BACKGROUND: Urinary biomarkers, such as pteridines, require normalization with respect to an individual's hydration status and time since last urination. Conventional creatinine-based corrections are affected by a multitude of patient factors whereas urine specific gravity (USG) is a bulk specimen property that may better resist those same factors. We examined the performance of traditional creatinine adjustments relative to USG to six urinary pteridines in aggressive and benign breast cancers. METHODS: 6-Biopterin, neopterin, pterin, 6-hydroxymethylpterin, isoxanthopterin, xanthopterin, and creatinine were analyzed in 50 urine specimens with a previously developed liquid chromatography-tandem mass spectrometry technique. Creatinine and USG performance were evaluated with non-parametric Mann-Whitney hypothesis testing. RESULTS: USG and creatinine were moderately correlated (r=0.857) with deviations occurring in dilute and concentrated specimens. In 48 aggressive and benign breast cancers, normalization by USG significantly outperformed creatinine adjustments which marginally outperformed uncorrected pteridines in predicting pathological status. In addition, isoxanthopterin and xanthopterin were significantly higher in pathological specimens when normalized by USG. CONCLUSION: USG, as a bulk property, can provide better performance over creatinine-based normalizations for urinary pteridines in cancer detection applications.


Assuntos
Detecção Precoce de Câncer/métodos , Detecção Precoce de Câncer/normas , Pteridinas/urina , Urinálise/métodos , Urinálise/normas , Urina/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/urina , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Neoplasias da Mama/urina , Diagnóstico Diferencial , Feminino , Humanos , Pessoa de Meia-Idade , Padrões de Referência , Gravidade Específica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA