Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732052

RESUMO

Fatty acid desaturase 1 (FADS1) is a rate-limiting enzyme in long-chain polyunsaturated fatty acid (LCPUFA) synthesis. Reduced activity of FADS1 was observed in metabolic dysfunction-associated steatotic liver disease (MASLD). The aim of this study was to determine whether adeno-associated virus serotype 8 (AAV8) mediated hepatocyte-specific overexpression of Fads1 (AAV8-Fads1) attenuates western diet-induced metabolic phenotypes in a rat model. Male weanling Sprague-Dawley rats were fed with a chow diet, or low-fat high-fructose (LFHFr) or high-fat high-fructose diet (HFHFr) ad libitum for 8 weeks. Metabolic phenotypes were evaluated at the endpoint. AAV8-Fads1 injection restored hepatic FADS1 protein levels in both LFHFr and HFHFr-fed rats. While AAV8-Fads1 injection led to improved glucose tolerance and insulin signaling in LFHFr-fed rats, it significantly reduced plasma triglyceride (by ~50%) and hepatic cholesterol levels (by ~25%) in HFHFr-fed rats. Hepatic lipidomics analysis showed that FADS1 activity was rescued by AAV8-FADS1 in HFHFr-fed rats, as shown by the restored arachidonic acid (AA)/dihomo-γ-linolenic acid (DGLA) ratio, and that was associated with reduced monounsaturated fatty acid (MUFA). Our data suggest that the beneficial role of AAV8-Fads1 is likely mediated by the inhibition of fatty acid re-esterification. FADS1 is a promising therapeutic target for MASLD in a diet-dependent manner.


Assuntos
Dessaturase de Ácido Graxo Delta-5 , Dieta Ocidental , Ácidos Graxos Dessaturases , Hepatócitos , Ratos Sprague-Dawley , Animais , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Dessaturases/genética , Masculino , Ratos , Dessaturase de Ácido Graxo Delta-5/metabolismo , Dieta Ocidental/efeitos adversos , Hepatócitos/metabolismo , Fenótipo , Modelos Animais de Doenças , Dependovirus/genética , Fígado/metabolismo , Triglicerídeos/metabolismo , Frutose/metabolismo
2.
Immunol Rev ; 319(1): 65-80, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37158427

RESUMO

The phagocytosis of dying cells by macrophages, termed efferocytosis, is a tightly regulated process that involves the sensing, binding, engulfment, and digestion of apoptotic cells. Efferocytosis not only prevents tissue necrosis and inflammation caused by secondary necrosis of dying cells, but it also promotes pro-resolving signaling in macrophages, which is essential for tissue resolution and repair following injury or inflammation. An important factor that contributes to this pro-resolving reprogramming is the cargo that is released from apoptotic cells after their engulfment and phagolysosomal digestion by macrophages. The apoptotic cell cargo contains amino acids, nucleotides, fatty acids, and cholesterol that function as metabolites and signaling molecules to bring about this re-programming. Here, we review efferocytosis-induced changes in macrophage metabolism that mediate the pro-resolving functions of macrophages. We also discuss various strategies, challenges, and future perspectives related to drugging efferocytosis-fueled macrophage metabolism as strategy to dampen inflammation and promote resolution in chronic inflammatory diseases.


Assuntos
Apoptose , Fagocitose , Humanos , Macrófagos/metabolismo , Inflamação/metabolismo , Necrose/metabolismo
3.
Sci Transl Med ; 14(672): eabp8309, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36417485

RESUMO

Necroptosis contributes to hepatocyte death in nonalcoholic steatohepatitis (NASH), but the fate and roles of necroptotic hepatocytes (necHCs) in NASH remain unknown. We show here that the accumulation of necHCs in human and mouse NASH liver is associated with an up-regulation of the "don't-eat-me" ligand CD47 on necHCs, but not on apoptotic hepatocytes, and an increase in the CD47 receptor SIRPα on liver macrophages, consistent with impaired macrophage-mediated clearance of necHCs. In vitro, necHC clearance by primary liver macrophages was enhanced by treatment with either anti-CD47 or anti-SIRPα. In a proof-of-concept mouse model of inducible hepatocyte necroptosis, anti-CD47 antibody treatment increased necHC uptake by liver macrophages and inhibited markers of hepatic stellate cell (HSC) activation, which is responsible for liver fibrogenesis. Treatment of two mouse models of diet-induced NASH with anti-CD47, anti-SIRPα, or AAV8-H1-shCD47 to silence CD47 in hepatocytes increased the uptake of necHC by liver macrophages and decreased markers of HSC activation and liver fibrosis. Anti-SIRPα treatment avoided the adverse effect of anemia found in anti-CD47-treated mice. These findings provide evidence that impaired clearance of necHCs by liver macrophages due to CD47-SIRPα up-regulation contributes to fibrotic NASH, and suggest therapeutic blockade of the CD47-SIRPα axis as a strategy to decrease the accumulation of necHCs in NASH liver and dampen the progression of hepatic fibrosis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Hepatopatia Gordurosa não Alcoólica/complicações , Camundongos Endogâmicos C57BL , Cirrose Hepática/complicações , Hepatócitos , Macrófagos , Antígeno CD47
4.
J Hepatol ; 76(4): 910-920, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34902531

RESUMO

BACKGROUND & AIMS: Non-alcoholic steatohepatitis (NASH) is a leading cause of hepatocellular carcinoma (HCC), but mechanisms linking NASH to eventual tumor formation remain poorly understood. Herein, we investigate the role of TAZ/WWTR1, which is induced in hepatocytes in NASH, in the progression of NASH to HCC. METHODS: The roles of hepatocyte TAZ and its downstream targets were investigated in diet-induced and genetic models of NASH-HCC using gene-targeting, adeno-associated virus 8 (AAV8)-H1-mediated gene silencing, or AAV8-TBG-mediated gene expression. The biochemical signature of the newly elucidated pathway was probed in liver specimens from humans with NASH-HCC. RESULTS: When hepatocyte-TAZ was silenced in mice with pre-tumor NASH using AAV8-H1-shTaz (short-hairpin Taz), subsequent HCC tumor development was suppressed. In this setting, the tumor-suppressing effect of shTaz was not dependent of TAZ silencing in the tumors themselves and could be dissociated from the NASH-suppressing effects of shTaz. The mechanism linking pre-tumor hepatocyte-TAZ to eventual tumor formation involved TAZ-mediated induction of the NOX2-encoding gene Cybb, which led to NADPH-mediated oxidative DNA damage. As evidence, DNA damage and tumor formation could be suppressed by treatment of pre-tumor NASH mice with AAV8-H1-shCybb; AAV8-TBG-OGG1, encoding the oxidative DNA-repair enzyme 8-oxoguanine glycosylase; or AAV8-TBG-NHEJ1, encoding the dsDNA repair enzyme non-homologous end-joining factor 1. In surrounding non-tumor tissue from human NASH-HCC livers, there were strong correlations between TAZ, NOX2, and oxidative DNA damage. CONCLUSIONS: TAZ in pre-tumor NASH-hepatocytes, via induction of Cybb and NOX2-mediated DNA damage, contributes to subsequent HCC tumor development. These findings illustrate how NASH provides a unique window into the early molecular events that can lead to tumor formation and suggest that NASH therapies targeting TAZ might also prevent NASH-HCC. LAY SUMMARY: Non-alcoholic steatohepatitis (NASH) is emerging as the leading cause of a type of liver cancer called hepatocellular carcinoma (HCC), but molecular events in pre-tumor NASH hepatocytes leading to HCC remain largely unknown. Our study shows that a protein called TAZ in pre-tumor NASH-hepatocytes promotes damage to the DNA of hepatocytes and thereby contributes to eventual HCC. This study reveals a very early event in HCC that is induced in pre-tumor NASH, and the findings suggest that NASH therapies targeting TAZ might also prevent NASH-HCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Carcinoma Hepatocelular , Neoplasias Hepáticas , NADPH Oxidase 2 , Hepatopatia Gordurosa não Alcoólica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Modelos Animais de Doenças , Hepatócitos/metabolismo , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
5.
Hepatology ; 73(6): 2206-2222, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32965675

RESUMO

BACKGROUND AND AIMS: Fibroblast growth factor (FGF) 1 demonstrated protection against nonalcoholic fatty liver disease (NAFLD) in type 2 diabetic and obese mice by an uncertain mechanism. This study investigated the therapeutic activity and mechanism of a nonmitogenic FGF1 variant carrying 3 substitutions of heparin-binding sites (FGF1△HBS ) against NAFLD. APPROACH AND RESULTS: FGF1△HBS administration was effective in 9-month-old diabetic mice carrying a homozygous mutation in the leptin receptor gene (db/db) with NAFLD; liver weight, lipid deposition, and inflammation declined and liver injury decreased. FGF1△HBS reduced oxidative stress by stimulating nuclear translocation of nuclear erythroid 2 p45-related factor 2 (Nrf2) and elevation of antioxidant protein expression. FGF1△HBS also inhibited activity and/or expression of lipogenic genes, coincident with phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and its substrates. Mechanistic studies on palmitate exposed hepatic cells demonstrated that NAFLD-like oxidative damage and lipid accumulation could be reversed by FGF1△HBS . In palmitate-treated hepatic cells, small interfering RNA (siRNA) knockdown of Nrf2 abolished only FGF1△HBS antioxidative actions but not improvement of lipid metabolism. In contrast, AMPK inhibition by pharmacological agent or siRNA abolished FGF1△HBS benefits on both oxidative stress and lipid metabolism that were FGF receptor (FGFR) 4 dependent. Further support of these in vitro findings is that liver-specific AMPK knockout abolished therapeutic effects of FGF1△HBS against high-fat/high-sucrose diet-induced hepatic steatosis. Moreover, FGF1△HBS improved high-fat/high-cholesterol diet-induced steatohepatitis and fibrosis in apolipoprotein E knockout mice. CONCLUSIONS: These findings indicate that FGF1△HBS is effective for preventing and reversing liver steatosis and steatohepatitis and acts by activation of AMPK through hepatocyte FGFR4.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Diabetes Mellitus Experimental , Dieta Hiperlipídica , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado , Masculino , Camundongos , Camundongos Knockout , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo , Palmitatos/farmacologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética
6.
Xenobiotica ; 49(12): 1414-1422, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30991879

RESUMO

1. Aryl hydrocarbon receptor (AhR) ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs), are endocrine disrupting chemicals associated with nonalcoholic fatty liver disease. This study documents the species-specific differences between mouse (high affinity mAhR) and human AhR (hAhR) activation by PCB congeners and Aroclor mixtures. 2. AhR activation by TCDD or PCBs 77, 81, 114, 114, 126, and 169 was measured using luciferase reporter constructs transfected into either Hepa1c1c7 mouse or HepG2 human liver cell lines. The EC50 values were lower in Hepa1c1c7 cells than HepG2 cells for all compounds tested except PCB 81. The results for TCDD and PCB 126 were validated in primary human and mouse hepatocytes by measuring CYP1A1 gene transcript levels. 3. Because humans are exposed to PCB mixtures, several mixtures (Aroclors 1254; 1260; and 1260 + 0.1% PCB126 each at 10 µg/ml) were then tested. Neither Aroclor 1254 nor Aroclor 1260 increased luciferase activity by the transfected AhR reporter construct. The Aroclor 1260 + 0.1% PCB 126 mixture induced mAhR-mediated transactivation, but not hAhR activation in cell lines. 4. In summary, significant concentration-dependent differences exist between human and mouse AhR activation by PCBs. Relative effect potencies differed, in some cases, from published toxic equivalency factors.


Assuntos
Arocloros/farmacocinética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bifenilos Policlorados/farmacocinética , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Família 1 do Citocromo P450/genética , Relação Dose-Resposta a Droga , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Bifenilos Policlorados/administração & dosagem , Receptores de Hidrocarboneto Arílico/genética , Especificidade da Espécie
7.
Toxicol Sci ; 162(2): 622-634, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29329451

RESUMO

The purpose of this study is to identify an environmentally relevant shared receptor target for endocrine and metabolism disrupting chemical pollutants. A feature of the tested chemicals was that they induced Cyp2b10 in vivo implicating activation of the constitutive androstane receptor (CAR). Recent studies suggest that these compounds could be indirect CAR activators via epidermal growth factor receptor (EGFR) inhibition. Assays included a CAR activity reporter assay, EGF endocytosis assay, and EGFR phosphorylation assay. Docking simulations were used to identify putative binding sites for environmental chemicals on the EGFR. Whole-weight and lipid-adjusted serum mean pollutant exposures were determined using data from the National Health and Examination Survey (NHANES) and compared with the IC50 values determined in vitro. Chlordane, trans-nonachlor, PCB-126, PCB-153, and atrazine were the most potent EGFR inhibitors tested. PCB-126, PCB-153, and trans-nonachlor appeared to be competitive EGFR antagonists as they displaced bound EGF from EGFR. However, atrazine acted through a different mechanism and could be an EGFR tyrosine kinase inhibitor. EGFR inhibition relative effect potencies were determined for these compounds. In NHANES, serum concentrations of trans-nonachlor, PCB-126, and PCB-153 greatly exceeded their calculated IC50 values. A common mechanism of action through EGFR inhibition for three diverse classes of metabolic disrupting chemicals was characterized by measuring inhibition of EGFR phosphorylation and EGF-EGFR endocytosis. Based on NHANES data, EGFR inhibition may be an environmentally relevant mode of action for some PCBs, pesticides, and herbicides.


Assuntos
Disruptores Endócrinos/toxicidade , Receptores ErbB/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Receptor Constitutivo de Androstano , Endocitose/efeitos dos fármacos , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/agonistas , Células Hep G2 , Humanos , Camundongos , Simulação de Acoplamento Molecular , Fosforilação , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transfecção
8.
Mol Med Rep ; 16(6): 9043-9050, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28990095

RESUMO

Gastric cancer is a leading cause of cancer­associated mortality worldwide. In studies on the mechanisms of antigastric cancer drugs, autophagy and endoplasmic reticulum (ER) stress have been demonstrated to serve an active role in gastric cancer. The organic extract of Periplaneta americana (also termed American Cockroach), which is named Kangfuxin (KFX) in China, has been used clinically as a traditional Chinese medicine against disorders, including stomach bleeding, gastric ulcers, tuberculosis, burns and trauma. However, the role of KFX and its mechanism in gastric cancer remains to be elucidated. The present study aimed to determine the effects of KFX in vitro against cultured the human carcinoma SGC­7901 cell line, and to explore the potential mechanism of the anticancer effects of KFX in gastric cancer. SGC­7901 cells were treated with different concentrations of KFX for varying amounts of time. As a result, KFX treatment decreased the ratio of apoptosis regulators Bcl­2/Bax, activated ER stress and induced significant apoptosis in SGC­7901 cells. Furthermore, KFX was able to restore the ER stress activation blocked by 4­phenylbutyrate. In addition, KFX activated autophagy in SGC­7901 cells. These results demonstrated that ER stress, autophagy and the apoptosis­inducing effects of KFX in SGC­7901 cells may achieve promising anticancer effects in numerous other types of cancer. In particular, ER stress may serve an essential role in KFX­induced anticancer effects on gastric carcinoma and a secondary role in autophagy.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Materia Medica/farmacologia , Neoplasias Gástricas/patologia , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Modelos Biológicos , Regulação para Cima/efeitos dos fármacos
9.
Int J Mol Sci ; 18(2)2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28208696

RESUMO

Endoplasmic reticulum (ER) stress-induced apoptosis plays an important role in a range of neurological disorders, such as neurodegenerative diseases, spinal cord injury, and diabetic neuropathy. Valproate (VPA), a typical antiepileptic drug, is commonly used in the treatment of bipolar disorder and epilepsy. Recently, VPA has been reported to exert neurotrophic effects and promote neurite outgrowth, but its molecular mechanism is still unclear. In the present study, we investigated whether VPA inhibited ER stress and promoted neuroprotection and neuronal restoration in SH-SY5Y cells and in primary rat cortical neurons, respectively, upon exposure to thapsigargin (TG). In SH-SY5Y cells, cell viability was detected by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and the expression of ER stress-related apoptotic proteins such as glucose­regulated protein (GRP78), C/EBP homologous protein (CHOP), and cleaved caspase-12/-3 were analyzed with Western blot analyses and immunofluorescence assays. To explore the pathway involved in VPA-induced cell proliferation, we also examined p-AKT, GSK3ß, p-JNK and MMP-9. Moreover, to detect the effect of VPA in primary cortical neurons, immunofluorescence staining of ß-III tubulin and Anti-NeuN was analyzed in primary cultured neurons exposed to TG. Our results demonstrated that VPA administration improved cell viability in cells exposed to TG. In addition, VPA increased the levels of GRP78 and p-AKT and decreased the levels of ATF6, XBP-1, GSK3ß, p-JNK and MMP-9. Furthermore, the levels of the ER stress-induced apoptosis response proteins CHOP, cleaved caspase-12 and cleaved caspase-3 were inhibited by VPA treatment. Meanwhile, VPA administration also increased the ratio of Bcl-2/Bax. Moreover, VPA can maintain neurite outgrowth of primary cortical neurons. Collectively, the neurotrophic effect of VPA is related to the inhibition of ER stress-induced apoptosis in SH-SY5Y cells and the maintenance of neuronal growth. Collectively, our results suggested a new approach for the therapeutic function of VPA in neurological disorders and neuroprotection.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ácido Valproico/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tapsigargina/farmacologia , Fator de Transcrição CHOP/metabolismo , Proteína X Associada a bcl-2/metabolismo
10.
Oncotarget ; 7(48): 78455-78472, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27793043

RESUMO

We assumed that diabetic encephalopathy (DEP) may be induced by endoplasmic reticulum (ER)-mediated inflammation and apoptosis in central nervous system. To test this notion, here we investigated the neuronal ER stress and associated inflammation and apoptosis in a type 2 diabetes model induced with high-fat diet/streptozotocin in Sprague-Dawley rats. Elevated expressions of ER stress markers, including glucose-regulated protein 78 (GRP78), activating transcription factor-6 (ATF-6), X-box binding protein-1 (XBP-1), and C/EBP homologous protein, and phosphor-Jun N-terminal kinase (p-JNK) were evident in the hippocampus CA1 of diabetic rats. These changes were also accompanied with the activation of NF-κB and the increased levels of inflammatory cytokines, tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6). Mechanistic study with in vitro cultured hippocampus neurons exposed to high glucose (HG), which induced a diabetes-like effects, shown by increased ER stress, JNK and NF-κB activation, and inflammatory response. Inhibition of ER stress by 4-phenylbutyrate (4-PBA) or blockade of JNK activity by specific inhibitor or transfection of DN-JNK attenuated HG-induced inflammation and associated apoptosis. To validate the in vitro finding, in vivo application of 4-PBA resulted in a significant reduction of diabetes-induced neuronal ER stress, inflammation and cell death, leading to the prevention of DEP. These results suggest that diabetes-induced neuronal ER stress plays the critical role for diabetes-induced neuronal inflammation and cell death, leading to the development of DEP.


Assuntos
Apoptose , Encefalopatias/etiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Estresse do Retículo Endoplasmático , Hipocampo/patologia , Neurônios/patologia , Fator 6 Ativador da Transcrição/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Comportamento Animal , Encefalopatias/metabolismo , Encefalopatias/patologia , Encefalopatias/prevenção & controle , Células Cultivadas , Cognição , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo , Fator de Transcrição CHOP/metabolismo , Transfecção , Fator de Necrose Tumoral alfa/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo
11.
Burns Trauma ; 4: 26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27574694

RESUMO

BACKGROUND: Pressure ulcers (PUs) are a major clinical problem that constitutes a tremendous economic burden on healthcare systems. Deep tissue injury (DTI) is a unique serious type of pressure ulcer that arises in skeletal muscle tissue. DTI arises in part because skeletal muscle tissues are more susceptible than skin to external compression. Unfortunately, few effective therapies are currently available for muscle injury. Basic fibroblast growth factor (bFGF), a potent mitogen and survival factor for various cells, plays a crucial role in the regulation of muscle development and homeostasis. The main purpose of this study was to test whether local administration of bFGF could accelerate muscle regeneration in a rat DTI model. METHODS: Male Sprague Dawley (SD) rats (age 12 weeks) were individually housed in plastic cages and a DTI PU model was induced according to methods described before. Animals were randomly divided into three groups: a normal group, a PU group treated with saline, and a PU group treated with bFGF (10 µg/0.1 ml) subcutaneously near the wound. RESULTS: We found that application of bFGF accelerated the rate of wound closure and promoted cell proliferation and tissue angiogenesis. In addition, compared to saline administration, bFGF treatment prevented collagen deposition, a measure of fibrosis, and up-regulated the myogenic marker proteins MyHC and myogenin, suggesting bFGF promoted injured muscle regeneration. Moreover, bFGF treatment increased levels of myogenesis-related proteins p-Akt and p-mTOR. CONCLUSIONS: Our findings show that bFGF accelerated injured skeletal muscle regeneration through activation of the PI3K/Akt/mTOR signaling pathway and suggest that administration of bFGF is a potential therapeutic strategy for the treatment of skeletal muscle injury in PUs.

12.
IUBMB Life ; 68(9): 735-47, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27350596

RESUMO

Vitiligo is a depigmentation disorder characterized by loss of functional melanocytes of the skin epidermis. The pathogenesis of vitiligo remains elusive. The purpose of this study is to investigate the effects of basic fibroblast growth factor (bFGF) on melanocyte migration, including its biochemical mechanism using transwell assay in vitro. We found that melanocyte treated with bFGF showed a significant increase in migration and cytoskeletal rearrangement. These changes were associated with increased activation of PI3K/Akt, Rac1, FAK, JNK, and ERK. Likewise, reduction of PI3K/Akt, Rac1, FAK, JNK, and ERK activity using selective inhibitors or siRNA was associated with impediment of bFGF-induced melanocyte migration. In addition, activity of Rac1, FAK, and JNK was reduced in cells in which PI3K/Akt was inhibited, activity of FAK and JNK was reduced in cells in which the Rac1 was inhibited, and activity of JNK was reduced in cells in which the FAK was inhibited. Collectively, these data demonstrate that bFGF facilitated melanocyte migration via PI3K/Akt-Rac1-FAK-JNK and ERK signaling pathways. © 2016 IUBMB Life, 68(9):735-747, 2016.


Assuntos
Movimento Celular/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/genética , Melanócitos/efeitos dos fármacos , Vitiligo/genética , Linhagem Celular , Movimento Celular/genética , Epiderme/efeitos dos fármacos , Epiderme/patologia , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Fator 2 de Crescimento de Fibroblastos/metabolismo , Quinase 1 de Adesão Focal/genética , Humanos , MAP Quinase Quinase 4/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanócitos/metabolismo , Melanócitos/patologia , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno/genética , Vitiligo/tratamento farmacológico , Vitiligo/patologia , Proteínas rac1 de Ligação ao GTP/genética
13.
Biomacromolecules ; 17(6): 2168-77, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27196997

RESUMO

Effective wound healing requires complicated, coordinated interactions and responses at protein, cellular, and tissue levels involving growth factor expression, cell proliferation, wound closure, granulation tissue formation, and vascularization. In this study, we develop a heparin-based coacervate consisting of poly(ethylene argininylaspartate digylceride) (PEAD) as a storage matrix, heparin as a bridge, and fibroblast growth factor-2 (FGF2) as a cargo (namely heparin-FGF2@PEAD) for wound healing. First, in vitro characterization demonstrates the loading efficiency and control release of FGF2 from the heparin-FGF2@PEAD coacervate. The following in vivo studies examine the wound healing efficiency of the heparin-FGF2@PEAD coacervate upon delivering FGF2 to full-thickness excisional skin wounds in vivo, in comparison with the other three control groups with saline, heparin@PEAD as vehicle, and free FGF2. Collective in vivo data show that controlled release of FGF2 to the wounds by the coacervate significantly accelerates the wound healing by promoting cell proliferation, stimulating the secretion of vascular endothelial growth factor (VEGF) for re-epithelization, collagen deposition, and granulation tissue formation, and enhancing the expression of platelet endothelial cell adhesion molecule (CD31) and alpha-smooth muscle actin (α-SMA) for blood vessel maturation. In parallel, no obvious wound healing effect is found for the control, vehicle, and free FGF2 groups, indicating the important role of the coavervate in the wound healing process. This work designs a suitable delivery system that can protect and release FGF2 in a sustained and controlled manner, which provides a promising therapeutic potential for topical treatment of wounds.


Assuntos
Proliferação de Células/efeitos dos fármacos , Derme/citologia , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Heparina/química , Regeneração/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/efeitos dos fármacos , Administração Cutânea , Administração Tópica , Animais , Células Cultivadas , Derme/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Regeneração/efeitos dos fármacos
14.
Int J Mol Sci ; 17(3): 284, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26927073

RESUMO

Pressure ulcer is a complex and significant health problem in long-term bedridden patients, and there is currently no effective treatment or efficient prevention method. Furthermore, the molecular mechanisms and pathogenesis contributing to the deep injury of pressure ulcers are unclear. The aim of the study was to explore the role of endoplasmic reticulum (ER) stress and Akt/GSK3ß signaling in pressure ulcers. A model of pressure-induced deep tissue injury in adult Sprague-Dawley rats was established. Rats were treated with 2-h compression and subsequent 0.5-h release for various cycles. After recovery, the tissue in the compressed regions was collected for further analysis. The compressed muscle tissues showed clear cellular degenerative features. First, the expression levels of ER stress proteins GRP78, CHOP, and caspase-12 were generally increased compared to those in the control. Phosphorylated Akt and phosphorylated GSK3ß were upregulated in the beginning of muscle compression, and immediately significantly decreased at the initiation of ischemia-reperfusion injury in compressed muscles tissue. These data show that ER stress may be involved in the underlying mechanisms of cell degeneration after pressure ulcers and that the Akt/GSK3ß signal pathway may play an important role in deep tissue injury induced by pressure and ischemia/reperfusion.


Assuntos
Estresse do Retículo Endoplasmático , Músculo Esquelético/metabolismo , Úlcera por Pressão/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Caspase 12/genética , Caspase 12/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Masculino , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/patologia , Úlcera por Pressão/etiologia , Úlcera por Pressão/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Regulação para Cima
15.
Biochim Biophys Acta ; 1859(9): 1083-1099, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26962021

RESUMO

Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic side effects. The impact of nuclear receptor crosstalk in NAFLD is likely to be profound, but requires further elucidation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.


Assuntos
Receptores X do Fígado/genética , Hepatopatia Gordurosa não Alcoólica/genética , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Esteroides/genética , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Receptor Constitutivo de Androstano , Drogas em Investigação/administração & dosagem , Drogas em Investigação/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Regulação da Expressão Gênica , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Receptores X do Fígado/agonistas , Receptores X do Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptor de Pregnano X , Receptor Cross-Talk/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/agonistas , Receptores de Esteroides/metabolismo , Transdução de Sinais , Xenobióticos/administração & dosagem , Xenobióticos/metabolismo
16.
J Cell Mol Med ; 20(6): 1062-75, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26769343

RESUMO

After spinal cord injury (SCI), disruption of blood-spinal cord barrier (BSCB) elicits blood cell infiltration such as neutrophils and macrophages, contributing to permanent neurological disability. Previous studies show that epidermal growth factor (EGF) produces potent neuroprotective effects in SCI models. However, little is known that whether EGF contributes to the integrity of BSCB. The present study is performed to explore the mechanism of BSCB permeability changes which are induced by EGF treatment after SCI in rats. In this study, we demonstrate that EGF administration inhibits the disruption of BSCB permeability and improves the locomotor activity in SCI model rats. Inhibition of the PI3K/Akt pathways by a specific inhibitor, LY294002, suppresses EGF-induced Rac1 activation as well as tight junction (TJ) and adherens junction (AJ) expression. Furthermore, the protective effect of EGF on BSCB is related to the activation of Rac1 both in vivo and in vitro. Blockade of Rac1 activation with Rac1 siRNA downregulates EGF-induced TJ and AJ proteins expression in endothelial cells. Taken together, our results indicate that EGF treatment preserves BSCB integrity and improves functional recovery after SCI via PI3K-Akt-Rac1 signalling pathway.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/uso terapêutico , Transdução de Sinais , Traumatismos da Medula Espinal/sangue , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal/patologia , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Animais , Cromonas/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fator de Crescimento Epidérmico/administração & dosagem , Feminino , Glucose/deficiência , Humanos , Morfolinas/farmacologia , Fármacos Neuroprotetores/farmacologia , Oxigênio , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
17.
Mol Neurobiol ; 53(7): 4375-86, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26232067

RESUMO

Clinical translation of growth factor therapies faces multiple challenges; the most significant one is the short half-life of the naked protein. Gelatin nanostructured lipid carriers (GNLs) had previously been used to encapsulate the basic fibroblast growth factor to enhance the functional recovery in hemiparkinsonian rats. In this research, we comparatively study the enhanced therapy between nerve growth factor (NGF) loaded GNLs (NGF-GNLs) and NGF only in spinal cord injury (SCI). The effects of NGF-GNLs and NGF only were tested by the Basso-Beattie-Bresnahan (BBB) locomotion scale, inclined plane test, and footprint analysis. Western blot analysis and immunofluorescent staining were further performed to identify the expression of ER stress-related proteins, neuron-specific marker neuronal nuclei (NeuN), and growth-associated protein 43 (GAP43). Correlated downstream signals Akt/GSK-3ß and ERK1/2 were also analyzed with or without inhibitors. Results showed that NGF-GNLs, compared to NGF only, enhanced the neuroprotection effect in SCI rats. The ER stress-induced apoptosis response proteins CHOP, GRP78 and caspase-12 inhibited by NGF-GNL treatment were more obvious. Meanwhile, NGF-GNLs in the recovery of SCI are related to the inhibition of ER stress-induced cell death via the activation of downstream signals PI3K/Akt/GSK-3ß and ERK1/2.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Gelatina/química , Lipídeos/química , Nanoestruturas/química , Fator de Crescimento Neural/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/fisiopatologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Portadores de Fármacos/química , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Nanoestruturas/ultraestrutura , Fator de Crescimento Neural/uso terapêutico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Células PC12 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Regulação para Cima/efeitos dos fármacos
18.
Int J Biol Sci ; 11(7): 845-59, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26078726

RESUMO

Fibroblasts play a pivotal role in the process of cutaneous wound repair, whereas their migratory ability under diabetic conditions is markedly reduced. In this study, we investigated the effect of basic fibroblast growth factor (bFGF) on human dermal fibroblast migration in a high-glucose environment. bFGF significantly increased dermal fibroblast migration by increasing the percentage of fibroblasts with a high polarity index and reorganizing F-actin. A significant increase in intracellular reactive oxygen species (ROS) was observed in dermal fibroblasts under diabetic conditions following bFGF treatment. The blockage of bFGF-induced ROS production by either the ROS scavenger N-acetyl-L-cysteine (NAC) or the NADPH oxidase inhibitor diphenylene iodonium chloride (DPI) almost completely neutralized the increased migration rate of dermal fibroblasts promoted by bFGF. Akt, Rac1 and JNK were rapidly activated by bFGF in dermal fibroblasts, and bFGF-induced ROS production and promoted dermal fibroblast migration were significantly attenuated when suppressed respectively. In addition, bFGF-induced increase in ROS production was indispensable for the activation of focal adhesion kinase (FAK) and paxillin. Therefore, our data suggested that bFGF promotes the migration of human dermal fibroblasts under diabetic conditions through increased ROS production via the PI3K/Akt-Rac1-JNK pathways.


Assuntos
Movimento Celular/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fibroblastos/fisiologia , Glucose/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Pele/citologia , Análise de Variância , Western Blotting , Polaridade Celular/fisiologia , Proliferação de Células/fisiologia , Fibroblastos/efeitos dos fármacos , Humanos , Microscopia de Fluorescência , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Cicatrização/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo
19.
J Cell Mol Med ; 19(3): 595-607, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25533999

RESUMO

Extensive research focused on finding effective strategies to prevent or improve recovery from myocardial ischaemia/reperfusion (I/R) injury. Basic fibroblast growth factor (bFGF) has been shown to have therapeutic potential in some heart disorders, including ischaemic injury. In this study, we demonstrate that bFGF administration can inhibit the endoplasmic reticulum (ER) stress and mitochondrial dysfunction induced in the heart in a mouse model of I/R injury. In vitro, bFGF exerts a protective effect by inhibiting the ER stress response and mitochondrial dysfunction proteins that are induced by tert-Butyl hydroperoxide (TBHP) treatment. Both of these in vivo and in vitro effects are related to the activation of two downstream signalling pathways, PI3K/Akt and ERK1/2. Inhibition of these PI3K/Akt and ERK1/2 pathways by specific inhibitors, LY294002 and PD98059, partially reduces the protective effect of bFGF. Taken together, our results indicate that the cardioprotective role of bFGF involves the suppression of ER stress and mitochondrial dysfunction in ischaemic oxidative damage models and oxidative stress-induced H9C2 cell injury; furthermore, these effects underlie the activation of the PI3K/Akt and ERK1/2 signalling pathways.


Assuntos
Cardiotônicos/uso terapêutico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Cardiotônicos/farmacologia , Linhagem Celular , Cromonas/farmacologia , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Flavonoides/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/patologia , Morfolinas/farmacologia , Traumatismo por Reperfusão Miocárdica/patologia , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , terc-Butil Hidroperóxido/toxicidade
20.
J Transl Med ; 12: 130, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24884850

RESUMO

BACKGROUND: Endoplasmic reticulum (ER) stress-induced apoptosis plays a major role in various diseases, including spinal cord injury (SCI). Nerve growth factor (NGF) show neuroprotective effect and improve the recovery of SCI, but the relations of ER stress-induced apoptosis and the NGF therapeutic effect in SCI still unclear. METHODS: Young adult female Sprague-Dawley rats's vertebral column was exposed and a laminectomy was done at T9 vertebrae and moderate contusion injuries were performed using a vascular clip. NGF stock solution was diluted with 0.9% NaCl and administered intravenously at a dose of 20 µg/kg/day after SCI and then once per day until they were executed. Subsequently, the rats were executed at 1d, 3 d, 7d and 14d. The locomotor activities of SCI model rats were tested by the 21-point Basso-Beattie-Bresnahan (BBB) locomotion scale, inclined plane test and footprint analysis. In addition, Western blot analysis was performed to identify the expression of ER-stress related proteins including CHOP, GRP78 and caspase-12 both in vivo and in vitro. The level of cell apoptosis was determined by TUNEL in vivo and Flow cytometry in vitro. Relative downstream signals Akt/GSK-3ß and ERK1/2were also analyzed with or without inhibitors in vitro. RESULTS: Our results demonstrated that ER stress-induced apoptosis was involved in the injury of SCI model rats. NGF administration improved the motor function recovery and increased the neurons survival in the spinal cord lesions of the model rats. NGF decreases neuron apoptosis which measured by TUNEL and inhibits the activation of caspase-3 cascade. The ER stress-induced apoptosis response proteins CHOP, GRP78 and caspase-12 are inhibited by NGF treatment. Meanwhile, NGF administration also increased expression of growth-associated protein 43 (GAP43). The administration of NGF activated downstream signals Akt/GSK-3ß and ERK1/2 in ER stress cell model in vitro. CONCLUSION: The neuroprotective role of NGF in the recovery of SCI is related to the inhibition of ER stress-induced cell death via the activation of downstream signals, also suggested a new trend of NGF translational drug development in the central neural system injuries which involved in the regulation of chronic ER stress.


Assuntos
Apoptose/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Traumatismos da Medula Espinal/patologia , Estresse Fisiológico , Animais , Comportamento Animal , Retículo Endoplasmático/patologia , Feminino , Células PC12 , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA