Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; : e2404741, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031679

RESUMO

Catalytic therapy has shown great potential for clinical application. However, conventional catalytic therapies rely on reactive oxygen species (ROS) as "therapeutic drugs," which have limitations in effectively inhibiting tumor recurrence and metastasis. Here, a biomimetic heterojunction catalyst is developed that can actively target orthotopic rectal cancer after oral administration. The heterojunction catalyst is composed of quatrefoil star-shaped BiVO4 (BVO) and ZnIn2S4 (ZIS) nanosheets through an in situ direct growth technique. Poly-norepinephrine and macrophage membrane coatings afford the biomimetic heterojunction catalyst (BVO/ZIS@M), which has high rectal cancer targeting and retention abilities. The coupled optical fiber intervention technology activates the multicenter coordination of five catalytic reactions of heterojunction catalysts, including two reduction reactions (O2→·O2 - and CO2→CO) and three oxidation reactions (H2O→·OH, GSH→GSSG, and LA→PA). These catalytic reactions not only induce immunogenic death in tumor cells through the efficient generation of ROS/CO and the consumption of GSH but also specifically lead to the use of lactic acid (LA) as an electron donor to improve catalytic activity and disrupt the LA-mediated immunosuppressive microenvironment, mediating synergistic catalysis and immunotherapy for orthotopic rectal cancer. Therefore, this optical fiber intervention triggered the combination of heterojunction catalytic therapy and immunotherapy, which exhibits prominent antitumor effects.

2.
Int J Chron Obstruct Pulmon Dis ; 19: 1591-1601, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005647

RESUMO

Background: Exercise is an indispensable component of pulmonary rehabilitation with strong anti-inflammatory effects. However, the mechanisms by which exercise prevents diaphragmatic atrophy in COPD (chronic obstructive pulmonary disease) remain unclear. Methods: Forty male C57BL/6 mice were assigned to the control (n=16) and smoke (n=24) groups. Mice in the smoke group were exposed to the cigarette smoke (CS) for six months. They were then divided into model and exercise training groups for 2 months. Histological changes were observed in lung and diaphragms. Subsequently, agonist U46639 and antagonist Y27632 of RhoA/ROCK were subjected to mechanical stretching in LPS-treated C2C12 myoblasts. The expression levels of Atrogin-1, MuRF-1, MyoD, Myf5, IL-1ß, TNF-α, and RhoA/ROCK were determined by Western blotting. Results: Diaphragmatic atrophy and increased RhoA/ROCK expression were observed in COPD mice. Exercise training attenuated diaphragmatic atrophy, decreased the expression of MuRF-1, and increased MyoD expression in COPD diaphragms. Exercise also affects the upregulation of RhoA/ROCK and inflammation-related proteins. In in vitro experiments with C2C12 myoblasts, LPS remarkably increased the level of inflammation and protein degradation, whereas Y27632 or combined with mechanical stretching prevented this phenomenon considerably. Conclusion: RhoA/ROCK plays an important role in the prevention of diaphragmatic atrophy in COPD.


Assuntos
Diafragma , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Atrofia Muscular , Doença Pulmonar Obstrutiva Crônica , Transdução de Sinais , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP , Animais , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Quinases Associadas a rho/metabolismo , Masculino , Atrofia Muscular/prevenção & controle , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Atrofia Muscular/etiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Diafragma/metabolismo , Diafragma/fisiopatologia , Diafragma/patologia , Linhagem Celular , Proteínas rho de Ligação ao GTP/metabolismo , Terapia por Exercício/métodos , Camundongos , Pulmão/patologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Mediadores da Inflamação/metabolismo , Condicionamento Físico Animal
3.
Sci Adv ; 10(19): eadm9561, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718119

RESUMO

Lactic acid (LA) accumulation in the tumor microenvironment poses notable challenges to effective tumor immunotherapy. Here, an intelligent tumor treatment microrobot based on the unique physiological structure and metabolic characteristics of Veillonella atypica (VA) is proposed by loading Staphylococcus aureus cell membrane-coating BaTiO3 nanocubes (SAM@BTO) on the surface of VA cells (VA-SAM@BTO) via click chemical reaction. Following oral administration, VA-SAM@BTO accurately targeted orthotopic colorectal cancer through inflammatory targeting of SAM and hypoxic targeting of VA. Under in vitro ultrasonic stimulation, BTO catalyzed two reduction reactions (O2 → •O2- and CO2 → CO) and three oxidation reactions (H2O → •OH, GSH → GSSG, and LA → PA) simultaneously, effectively inducing immunogenic death of tumor cells. BTO catalyzed the oxidative coupling of VA cells metabolized LA, effectively disrupting the immunosuppressive microenvironment, improving dendritic cell maturation and macrophage M1 polarization, and increasing effector T cell proportions while decreasing regulatory T cell numbers, which facilitates synergetic catalysis and immunotherapy.


Assuntos
Compostos de Bário , Materiais Biomiméticos , Neoplasias Colorretais , Terapia de Imunossupressão , Nanotubos , Robótica , Titânio , Microambiente Tumoral , Veillonella , Materiais Biomiméticos/administração & dosagem , Catálise , Neoplasias Colorretais/tratamento farmacológico , Staphylococcus aureus , Nanotubos/química , Titânio/administração & dosagem , Titânio/farmacologia , Compostos de Bário/administração & dosagem , Compostos de Bário/farmacologia , Membrana Celular/química , Administração Oral , Oxirredução , Terapia de Imunossupressão/métodos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Ácido Láctico/metabolismo , Humanos , Linhagem Celular Tumoral
4.
Adv Sci (Weinh) ; 11(22): e2310211, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460166

RESUMO

The precise targeted delivery of therapeutic agents to deep regions of the brain is crucial for the effective treatment of various neurological diseases. However, achieving this goal is challenging due to the presence of the blood‒brain barrier (BBB) and the complex anatomy of the brain. Here, a biomimetic self-propelled nanomotor with cascade targeting capacity is developed for the treatment of neurological inflammatory diseases. The self-propelled nanomotors are designed with biomimetic asymmetric structures with a mesoporous SiO2 head and multiple MnO2 tentacles. Macrophage membrane biomimetic modification endows nanomotors with inflammatory targeting and BBB penetration abilities The MnO2 agents catalyze the degradation of H2O2 into O2, not only by reducing brain inflammation but also by providing the driving force for deep brain penetration. Additionally, the mesoporous SiO2 head is loaded with curcumin, which actively regulates macrophage polarization from the M1 to the M2 phenotype. All in vitro cell, organoid model, and in vivo animal experiments confirmed the effectiveness of the biomimetic self-propelled nanomotors in precise targeting, deep brain penetration, anti-inflammatory, and nervous system function maintenance. Therefore, this study introduces a platform of biomimetic self-propelled nanomotors with inflammation targeting ability and active deep penetration for the treatment of neurological inflammation diseases.


Assuntos
Biomimética , Barreira Hematoencefálica , Dióxido de Silício , Animais , Dióxido de Silício/química , Camundongos , Biomimética/métodos , Barreira Hematoencefálica/metabolismo , Compostos de Manganês/química , Materiais Biomiméticos/química , Sistemas de Liberação de Medicamentos/métodos , Óxidos/química , Curcumina/uso terapêutico , Curcumina/farmacologia , Modelos Animais de Doenças , Doenças Neuroinflamatórias , Inflamação , Macrófagos , Encéfalo/metabolismo , Nanopartículas/química
5.
Clin Transl Oncol ; 26(2): 496-514, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37407805

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common types of malignant tumors, with a slow onset, rapid progression, and frequent recurrence. Previous research has implicated mitochondrial ribosomal genes in the development, metastasis, and prognosis of various cancers. However, further research is necessary to establish a link between mitochondrial ribosomal protein (MRP) family expression and HCC diagnosis, prognosis, ferroptosis-related gene (FRG) expression, m6A modification-related gene expression, tumor immunity, and drug sensitivity. METHODS: Bioinformatics resources were used to analyze data from patients with HCC retrieved from the TCGA, ICGC, and GTEx databases (GEPIA, UALCAN, Xiantao tool, cBioPortal, STRING, Cytoscape, TISIDB, and GSCALite). RESULTS: Among the 82 MRP family members, 14 MRP genes (MRPS21, MRPS23, MRPL9, DAP3, MRPL13, MRPL17, MRPL24, MRPL55, MRPL16, MRPL14, MRPS17, MRPL47, MRPL21, and MRPL15) were significantly upregulated differentially expressed genes (DEGs) in HCC tumor samples in comparison to normal samples. Receiver-operating characteristic curve analysis indicated that all 14 DEGs show good diagnostic performance. Furthermore, TCGA analysis revealed that the mRNA expression of 39 MRPs was associated with overall survival (OS) in HCC. HCC was divided into two molecular subtypes (C1 and C2) with distinct prognoses using clustering analysis. The clusters showed different FRG expression and m6A methylation profiles and immune features, and prognostic models showed that the model integrating 5 MRP genes (MRPS15, MRPL3, MRPL9, MRPL36, and MRPL37) and 2 FRGs (SLC1A5 and SLC5A11) attained a greater clinical net benefit than three other prognostic models. Finally, analysis of the CTRP and GDSC databases revealed several potential drugs that could target prognostic MRP genes. CONCLUSION: We identified 14 MRP genes as HCC diagnostic markers. We investigated FRG and m6A modification-related gene expression profiles and immune features in patients with HCC, and developed and validated a model incorporating MRP and FRG expression that accurately and reliably predicts HCC prognosis and may predict disease progression and treatment response.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Prognóstico , Ribossomos , Proteínas Ribossômicas/genética , Biomarcadores Tumorais/genética , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos , Proteínas de Transporte de Sódio-Glucose
6.
Adv Mater ; 36(3): e2308726, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37842855

RESUMO

Piezoelectric, pyroelectric, and ferroelectric materials are considered unique biomedical materials due to their dielectric crystals and asymmetric centers that allow them to directly convert various primary forms of energy in the environment, such as sunlight, mechanical energy, and thermal energy, into secondary energy, such as electricity and chemical energy. These materials possess exceptional energy conversion ability and excellent catalytic properties, which have led to their widespread usage within biomedical fields. Numerous biomedical applications have demonstrated great potential with these materials, including disease treatment, biosensors, and tissue engineering. For example, piezoelectric materials are used to stimulate cell growth in bone regeneration, while pyroelectric materials are applied in skin cancer detection and imaging. Ferroelectric materials have even found use in neural implants that record and stimulate electrical activity in the brain. This paper reviews the relationship between ferroelectric, piezoelectric, and pyroelectric effects and the fundamental principles of different catalytic reactions. It also highlights the preparation methods of these three materials and the significant progress made in their biomedical applications. The review concludes by presenting key challenges and future prospects for efficient catalysts based on piezoelectric, pyroelectric, and ferroelectric nanomaterials for biomedical applications.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Materiais Biocompatíveis/farmacologia , Encéfalo , Catálise , Proliferação de Células
7.
Nanoscale ; 15(48): 19407-19422, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37965689

RESUMO

Treating cancer remains one of the most formidable challenges in modern medicine, with traditional treatment options often being limited by poor therapeutic outcomes and unacceptable side effects. Nanocatalytic therapy activates tumor-localized catalytic reactions in situ via nontoxic or minimally toxic nanocatalysts responding to unique cues from the tumor microenvironment or external stimuli. In particular, sonocatalytic cancer therapy is a promising approach that has emerged as a potential solution to this problem through the combination of ultrasound waves and catalytic materials to selectively target and destroy cancer cells. Compared to light, ultrasound exhibits higher spatial precision, lower energy attenuation, and superior tissue penetrability, furnishing more energy to catalysts. Multidimensional modulation of nanocatalyst structures and properties is pivotal to maximizing catalytic efficiency given constraints in external stimulative energy as well as substrate types and levels. In this review, we discuss the various theories and mechanisms underlying sonocatalytic cancer therapy, as well as advanced catalysts that have been developed for this application. Additionally, we explore the design of sonocatalytic cancer therapy systems, including the use of heterojunction catalysts and the optimal conditions for achieving maximum therapeutic effects. Finally, we highlight the potential benefits of sonocatalytic cancer therapy over traditional cancer treatments, including its noninvasive nature and lower toxicity.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Ondas Ultrassônicas , Microambiente Tumoral
8.
Cureus ; 15(9): e45793, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37872914

RESUMO

Hypokalemia may be present in some patients with Sjogren's syndrome. When a patient with Sjogren's syndrome presents with hypokalemia, we would first consider it to be a result of the renal involvement of Sjogren's syndrome. However, in this case report, we present a young woman with Sjogren's syndrome who presented with hypokalemia that was not caused by renal tubular acidosis but by the presence of a coexisting aldosterone-producing adenoma. Cases of Sjogren's syndrome coexisting with aldosterone-producing adenoma are extremely rare. This finding underscores the need for more careful differential diagnosis in patients with Sjogren's syndrome who also have hypokalemia.

9.
Acta Biomater ; 168: 440-457, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479159

RESUMO

Cosmetics for perming hair are commonly used but have negative impacts on hair fibers. Repairing damaged hair with conditioners, hair oil, and hair masks can provide relief but cannot prevent injuries. Recent research has shown that proteins and amino acids can remodel hair's disulfide bonds. However, the permeation ability of proteins is limited, and amino acids may disrupt the secondary structure of hair keratins. Our study demonstrates that peptides can be safely, efficiently, and promisingly used for hair perming. A bioinspired peptide, PepACS (PepA-PepC-SPB), was designed through bioinformatics. It can interact with keratin's sulfhydryl group in situ to remodel disulfide bonds without affecting hair fiber's tensile properties. The potential of PepACS to repair cuticle injuries is also observed through scanning electron microscope visualization. Besides, linking PepACS with mCherry enables hair dyeing. This research suggests that biomaterials can be applied in the hair care industry. STATEMENT OF SIGNIFICANCE: Chemical perming products can have negative impacts on people's health and hair fibers, making it essential to explore alternative methods. Peptides treatment is a promising option, but synthesizing sulfur-rich short peptides for hair perming has not been demonstrated before. In this paper, we utilized bioinformatics to design bio-inspired peptides that can interact with hair keratins and form curled shapes. Our study demonstrates that bioinformatics tools can be utilized to design bioinspired peptides with unique functions. Sulfur-rich short peptides can be heterologously expressed with fusion strategies, and PepACS can securely bind hair fibers through disulfide bonds. Importantly, perming hair with 0.01% PepACS maintains the mechanical properties of hair, and dyeing hair with the fusion protein PepACS_mCh can be facilitated by ethanol. These findings suggest that the strategy of perming and dyeing hair through peptides is non-injurious, and the peptides used for repairing hair damage show tremendous potential.


Assuntos
Tinturas para Cabelo , Queratinas Específicas do Cabelo , Humanos , Queratinas Específicas do Cabelo/análise , Queratinas Específicas do Cabelo/metabolismo , Tinturas para Cabelo/análise , Tinturas para Cabelo/química , Tinturas para Cabelo/metabolismo , Proteínas/metabolismo , Peptídeos/metabolismo , Aminoácidos/análise , Cabelo/química , Dissulfetos/metabolismo
10.
Foods ; 11(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35741918

RESUMO

Deoxynivalenol (DON) contamination in germs and germ oil is posing a serious threat to food and feed security. However, the transformation pathway, the distribution of DON, and its degradation products in edible oil refining have not yet been reported in detail. In this work, we systematically explored the variation of DON in maize germ oil during refining and demonstrated that the DON in germ oil can be effectively removed by refining, during which a part of DON was transferred to the wastes, and another section of DON was degraded during degumming and alkali refining. Moreover, the DON degradation product was identified to be norDON B by using the ultraviolet absorption spectrum, high-performance liquid chromatography (HPLC), ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF MS), and nuclear magnetic resonance (NMR) methods, and the degradation product was found to be distributed in waste products during oil refining. This study provides a scientific basis and useful reference for the production of non-mycotoxins edible oil by traditional refining.

11.
J Biomed Mater Res A ; 107(10): 2296-2309, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31152618

RESUMO

Nanoscale hydroxyapatite (HAp) is an optimal candidate material in biomedical area for its good biocompatibility and bioactivity. In this study, HAp nanorods are prepared via hydrothermal method and combined with monolayered graphene oxide (GO). The obtained HAp@GO with excellent biocompatibility is revealed to have high drug loading capacity (698.7 µg/mg) for anticancer drug doxorubicin (DOX) and efficient photothermal conversion property. And the drug release property of DOX loaded HAp@GO (HAp@GO-DOX) is demonstrated to be controlled by pH and near-infrared light, which is favorable for cancer therapy. in vitro studies on cancer therapy demonstrate that the combined treatment, compared with either chemotherapy or photothermal therapy alone, has better synergistic therapeutic effect. These findings prove the great potential application of the nanocomposites for cancer therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Durapatita/química , Grafite/química , Neoplasias/tratamento farmacológico , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Doxorrubicina/uso terapêutico , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Humanos , Hipertermia Induzida , Teste de Materiais , Modelos Biológicos , Fototerapia , Coelhos , Espectrofotometria Ultravioleta
12.
Colloids Surf B Biointerfaces ; 180: 401-410, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31082778

RESUMO

Cobalt nanowires (CoNWs) simultaneously possessing advantages in photothermal effect, targeting drug delivery and photoacoustic imaging property are hopefully promising strategies to further improve the treatment efficiency and reduce the side effects of cancer chemotherapy. Herein, a unique cobalt-based structure decorated with graphene oxide (GO) and polyethylene glycol (PEG) is fabricated through a facile approach. The resultant nanohybrids show relatively low cytotoxicity, favorable biocompatibility as well as inherit the outstanding properties of cobalt. Moreover, CoNWs decorated with GO and PEG (CoNWs-GO-PEG) can load therapeutic drug molecules (e.g., doxorubicin, DOX) with a high drug loading capacity (992.91 mg/g), and simultaneously they are responsive to pH, NIR (near-infrared) irradiation and magnetism stimulation. Accordingly, CoNWs-GO-PEG-DOX shows the satisfactory effect of eliminating cancer cells with synergistic chemo-photothermal therapy in vitro. Current work provides a solid demonstration of the potential of CoNWs-GO-PEG for serving as a targeted antitumor agent in synergistic chemo-photothermal therapy.


Assuntos
Cobalto/química , Hipertermia Induzida , Nanofios/química , Neoplasias/terapia , Fototerapia , Células 3T3 , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Grafite/química , Hemólise/efeitos dos fármacos , Fenômenos Magnéticos , Camundongos , Nanofios/ultraestrutura , Neoplasias/tratamento farmacológico , Polietilenoglicóis/química , Coelhos , Propriedades de Superfície
13.
Sci Total Environ ; 645: 347-355, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30025240

RESUMO

The polycyclic aromatic hydrocarbon (PAH) and nitro-polycyclic aromatic hydrocarbon (NPAH) emissions from 16 gasoline passenger cars, encompassing five emission standards and two driving conditions, were tested using a portable emission measurement system (PEMS) in Beijing under on-road conditions. In total, 16 PAHs and 9 NPAHs were quantified in both the gaseous and particulate phases by high-performance liquid chromatography (HPLC). The results indicated that lower PAH and NPAH emissions were observed with improved emission standards, especially for China 3 to China 5 vehicles (P < 0.05). Higher emission factors (EFs) were detected on nonhighway roads than on highway roads due to incomplete combustion. Although most PAHs and NPAHs were in the gas-phase, the TEQBaP of the particulate-phase PAHs was 4.2 times higher than that of the gas-phase PAHs, whereas the opposite pattern was observed for NPAHs. The TEQBaP EFs on nonhighway roads were 1.0-2.3 times higher than those on highway roads. The results of this study will be valuable for estimating the emissions and performing carcinogenic risk assessment of PAHs and NPAHs from urban gasoline passenger cars on roads. Formulating more stringent regulations and emission control technologies for PAHs and NPAHs is important.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Emissões de Veículos/análise , Poluição do Ar/estatística & dados numéricos , Pequim , China , Gasolina , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA