Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16400, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773521

RESUMO

Pancreatic cancer, as one of the neoplasms with the highest degree of malignancy, has become a main disease of concerns in recent years. BHLHE40, a critical transcription factor for remodeling of the tumor immune microenvironment, has been described to be substantially increased in a variety of tumor-associated immune cells. Nevertheless, the pro-cancer biological functions and underlying molecular mechanisms of BHLHE40 for pancreatic cancer and its unique microenvironment are unclear. Hereby, we investigated the pro-oncogenic role of BHLHE40 in the pancreatic cancer microenvironment by bioinformatics analysis and cell biology experiments and determined that the expression of BHLHE40 was obviously elevated in pancreatic cancer tissues than in adjacent normal tissues. In parallel, Kaplan-Meier survival analysis unveiled that lower expression of BHLHE40 was strongly associated with better prognosis of patients. Receiver operating characteristic (ROC) curve analysis confirmed the accuracy of the BHLHE40-related prediction model. Subsequent, spearman correlation analysis observed that higher expression of BHLHE40 might be involved in immunosuppression of pancreatic cancer. Silencing of BHLHE40 could inhibit proliferation, invasion, and apoptosis of pancreatic cancer in vitro and in vivo, implying that BHLHE40 is expected to be a potential therapeutic target for pancreatic cancer. In addition, we explored and validated the FGD5-AS1/miR-15a-5p axis as a potential upstream regulatory mode for high expression of BHLHE40 in pancreatic cancer. In summary, our data showed that ceRNA involved in the regulation of BHLHE40 contributes to the promotion of immunosuppressive response in pancreatic and is expected to be a diagnostic marker and potential immunotherapeutic target for pancreatic cancer.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Prognóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , RNA Longo não Codificante/genética , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neoplasias Pancreáticas
2.
Adv Healthc Mater ; 12(24): e2300666, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37216966

RESUMO

The native extracellular matrix is highly dynamic with continuous mutual feedback between cells being responsible for many important cell function regulators. However, establishing bidirectional interaction between complex adaptive microenvironments and cells remains elusive. Herein an adaptive biomaterial based on lysozyme monolayers self-assembled at a perfluorocarbon FC40-water interface is reported. The dynamic adaptivity of interfacially assembled protein nanosheets is modulated independently of bulk mechanical properties by covalent crosslinking. This provides a scenario to establish bidirectional interactions of cells with liquid interfaces of varying dynamic adaptivity. This is found that growth and multipotency of human mesenchymal stromal cells (hMSCs) are enhanced at the highly adaptive fluid interface. The multipotency retention of hMSCs is mediated by low cell contractility and metabolomic activity involving the continuous mutual feedback between the cells and materials. Consequently, an understanding of the cells' response to dynamic adaptivity has substantial implications for regenerative medicine and tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Proteínas , Humanos , Diferenciação Celular/fisiologia , Proteínas/metabolismo , Materiais Biocompatíveis/metabolismo , Engenharia Tecidual , Células-Tronco Mesenquimais/metabolismo
3.
Environ Sci Technol ; 57(14): 5852-5860, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36976858

RESUMO

Chlorine reactions with peptide-bound amino acids form disinfection byproducts and contribute to pathogen inactivation by degrading protein structure and function. Peptide-bound lysine and arginine are two of the seven chlorine-reactive amino acids, but their reactions with chlorine are poorly characterized. Using N-acetylated lysine and arginine as models for peptide-bound amino acids and authentic small peptides, this study demonstrated conversion of the lysine side chain to mono- and dichloramines and the arginine side chain to mono-, di-, and trichloramines in ≤0.5 h. The lysine chloramines formed lysine nitrile and lysine aldehyde at ∼6% yield over ∼1 week. The arginine chloramines formed ornithine nitrile at ∼3% yield over ∼1 week but not the corresponding aldehyde. While researchers hypothesized that the protein aggregation observed during chlorination arises from covalent Schiff base cross-links between lysine aldehyde and lysine on different proteins, no evidence for Schiff base formation was observed. The rapid formation of chloramines and their slow decay indicate that they are more relevant than the aldehydes and nitriles to byproduct formation and pathogen inactivation over timescales relevant to drinking water distribution. Previous research has indicated that lysine chloramines are cytotoxic and genotoxic to human cells. The conversion of lysine and arginine cationic side chains to neutral chloramines should alter protein structure and function and enhance protein aggregation by hydrophobic interactions, contributing to pathogen inactivation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Cloraminas/química , Lisina , Halogenação , Arginina , Cloro/química , Agregados Proteicos , Bases de Schiff , Desinfecção , Aminoácidos/química , Peptídeos , Aldeídos , Nitrilas , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA