Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 312: 122751, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39121726

RESUMO

Tumor immunotherapies have emerged as a promising frontier in the realm of cancer treatment. However, challenges persist in achieving localized, durable immunostimulation while counteracting the tumor's immunosuppressive environment. Here, we develop a natural mussel foot protein-based nanomedicine with spatiotemporal control for tumor immunotherapy. In this nanomedicine, an immunoadjuvant prodrug and a photosensitizer are integrated, which is driven by their dynamic bonding and non-covalent assembling with the protein carrier. Harnessing the protein carrier's bioadhesion, this nanomedicine achieves a drug co-delivery with spatiotemporal precision, by which it not only promotes tumor photothermal ablation but also broadens tumor antigen repertoire, facilitating in situ immunotherapy with durability and maintenance. This nanomedicine also modulates the tumor microenvironment to overcome immunosuppression, thereby amplifying antitumor responses against tumor progression. Our strategy underscores a mussel foot protein-derived design philosophy of drug delivery aimed at refining combinatorial immunotherapy, offering insights into leveraging natural proteins for cancer treatment.


Assuntos
Imunoterapia , Nanomedicina , Animais , Imunoterapia/métodos , Nanomedicina/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Terapia Fototérmica/métodos , Camundongos , Humanos , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas/química , Feminino , Neoplasias/terapia , Neoplasias/imunologia , Adesivos/química , Camundongos Endogâmicos C57BL , Adjuvantes Imunológicos/farmacologia
2.
Angew Chem Int Ed Engl ; 62(22): e202303684, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37015880

RESUMO

Advanced applications of biomacromolecular assemblies require a stringent degree of control over molecular arrangement, which is a challenge to current synthetic methods. Here we used a neighbor-controlled patterning strategy to build multicomponent peptide fibrils with an unprecedented capacity to manipulate local composition and peptide positions. Eight peptides were designed to have regulable nearest neighbors upon co-assembly, which, by simulation, afforded 412 different patterns within fibrils, with varied compositions and/or peptide positions. The fibrils with six prescribed patterns were experimentally constructed with high accuracy. The controlled patterning also applies to functionalities appended to the peptides, as exemplified by arranging carbohydrate ligands at nanoscale precision for protein recognition. This study offers a route to molecular editing of inner structures of peptide assemblies, prefiguring the uniqueness and richness of patterning-based material design.


Assuntos
Peptídeos , Proteínas , Peptídeos/química , Conformação Molecular
3.
Photoacoustics ; 28: 100423, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36386293

RESUMO

Photoacoustic spectroscopy (PAS) combines the advantages of high sensitivity, high specificity and zero background, which is very suitable for trace gas detection. Cantilever-enhanced photoacoustic spectroscopy (CEPAS) utilizes highly sensitive mechanical cantilevers to further enhance the photoacoustic signal and shows a gas concentration detection limit of parts per trillion. This review is intended to summarize the recent advancements in CEPAS based on different displacement detection methods, such as Michelson interference, Fabry-Perot interference, light intensity detection, capacitive, piezoelectric and piezoresistive detection. Fundamental mechanisms and technical requirements of CEPAS are also provided in the literature. Finally, potential challenges and further opportunities are also discussed.

4.
Sensors (Basel) ; 22(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35161900

RESUMO

For certain diseases, the continuous long-term monitoring of the physiological condition is crucial. Therefore, non-invasive monitoring methods have attracted widespread attention in health care. This review aims to discuss the non-invasive monitoring technologies for human health based on photoacoustic spectroscopy. First, the theoretical basis of photoacoustic spectroscopy and related devices are reported. Furthermore, this article introduces the monitoring methods for blood glucose, blood oxygen, lipid, and tumors, including differential continuous-wave photoacoustic spectroscopy, microscopic photoacoustic spectroscopy, mid-infrared photoacoustic detection, wavelength-modulated differential photoacoustic spectroscopy, and others. Finally, we present the limitations and prospects of photoacoustic spectroscopy.


Assuntos
Glicemia , Técnicas Fotoacústicas , Humanos , Análise Espectral
5.
Photoacoustics ; 24: 100294, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34458095

RESUMO

Photoacoustic (PA) microscopy (PAM) has achieved remarkable progress in biomedicine in the past decade. It is a fast-rising imaging modality with diverse applications, such as hemodynamics, oncology, metabolism, and neuroimaging. Combining optical excitation and acoustic detection, the hybrid nature of PAM provides advantages of rich contrast and deep penetration. In recent years, high-speed PAM has flourished and enabled high-speed wide-field imaging of functional activity. In this review, we summarize the most recent advances in high-speed PAM technologies, including high-repetition-rate multi-wavelength laser development, fast scanning techniques, and novel PA signal acquisition strategies.

6.
Nat Photonics ; 14(3): 164-170, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34178097

RESUMO

Current embodiments of photoacoustic imaging require either serial detection with a single-element ultrasonic transducer or parallel detection with an ultrasonic array, necessitating a trade-off between cost and throughput. Here, we present photoacoustic topography through an ergodic relay (PATER) for low-cost high-throughput snapshot widefield imaging. Encoding spatial information with randomized temporal signatures through ergodicity, PATER requires only a single-element ultrasonic transducer to capture a widefield image with a single laser shot. We applied PATER to demonstrate both functional imaging of hemodynamic responses and high-speed imaging of blood pulse wave propagation in mice in vivo. Leveraging the high frame rate of 2 kHz, PATER tracked and localized moving melanoma tumor cells in the mouse brain in vivo, which enabled flow velocity quantification and super-resolution imaging. Among the potential biomedical applications of PATER, wearable monitoring of human vital signs in particular is envisaged.

7.
Biomater Sci ; 7(9): 3683-3692, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31361291

RESUMO

Synergistic cancer starvation/ROS-mediated/chemo-therapy is developed through a cascade reaction with enzyme glucose oxidase (GOX) modified on the surface of an Fe-based metal organic framework (MOF(Fe)) and drug camptothecin (CPT) loaded into the cavities of MOF(Fe). Once internalized by tumor cells, GOX catalyzes endogenous glucose into hydrogen peroxide (H2O2) and gluconic acid (H+) enabling starvation therapy through choking off energy (glucose) supply. Meanwhile, the acidic micro-environment of tumor enhanced by the generated H+ degrades the MOF(Fe) simultaneously releasing CPT for chemotherapy and Fe3+, catalyzing H2O2 into one of the strongest reactive oxygen species (ROS) ˙OH enabling ROS-mediated therapy. Both in vitro and in vivo results show remarkable tri-modal synergistic anticancer effects. This work may shed some light on the development of novel multi-modal cancer therapies without any external intervention.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Camptotecina/farmacologia , Cloretos/farmacologia , Compostos Férricos/farmacologia , Glucose Oxidase/metabolismo , Estruturas Metalorgânicas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Biocatálise , Camptotecina/química , Camptotecina/metabolismo , Proliferação de Células/efeitos dos fármacos , Cloretos/química , Cloretos/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Férricos/química , Compostos Férricos/metabolismo , Células HeLa , Humanos , Peróxido de Hidrogênio/metabolismo , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Tamanho da Partícula , Relação Estrutura-Atividade , Células Tumorais Cultivadas
8.
Nanoscale ; 11(27): 13078-13088, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31265049

RESUMO

Although photodynamic therapy (PDT), which uses a photosensitizer (PS) to generate toxic reactive oxygen species (ROS) upon laser irradiation to kill cancer cells, has been widely applied, the relatively high laser intensity required causes photodamage to healthy neighboring cells and limits its success. Furthermore, glutathione (GSH, an antioxidant) is overexpressed in cancer cells, which can scavenge the generated ROS, thus lowering PDT efficacy. Herein, ultralow-intensity near-infrared (NIR) light-triggered PDT was developed and enhanced through combined GSH-depletion chemotherapy (Chemo) based on exo- and endogenous synergistic effects. Highly emissive upconversion nanoparticles (UCNPs) were prepared and coated with a solid silica shell, which was used to encapsulate the PS rose bengal and bond the drug camptothecin with a disulfide-bond linker. The combination of highly emissive UCNPs and a matchable PS with an optimized loading dosage enabled ROS to be generated for PDT even upon 808 nm laser irradiation with ultralow intensity (0.30 W cm-2). According to the American National Standard, this laser intensity is below the maximum permissible exposure of skin (MPE, 0.33 W cm-2). Once the prepared nanoparticles endocytosed and encountered intracellular GSH, the disulfide-bond linker was cleaved by GSH, leading to drug release and GSH depletion. PDT was therefore simultaneously enhanced through the exogenous synergic effect of Chemo (namely, the "1 + 1 > 2" therapeutic effect) and the endogenous synergic effect as a result of GSH depletion. It was proven both in vitro and in vivo that this novel dual-synergistic Chemo/PDT system exhibits remarkable therapeutic efficacy with minimal photodamage to healthy neighboring cells.


Assuntos
Glutationa/metabolismo , Nanopartículas/uso terapêutico , Neoplasias Experimentais/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Dióxido de Silício/farmacologia , Animais , Preparações de Ação Retardada/farmacologia , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Espécies Reativas de Oxigênio/metabolismo
9.
Int J Nanomedicine ; 14: 4017-4028, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31239667

RESUMO

Background: The design of novel nanoparticles with higher therapeutic efficacy and lower side effects, is still difficult but encouraging in cancer therapy. Specifically, for upconversion nanoparticles (UCNP)-based drug release, a high intensity of NIR light (1.4~5.0 W/cm2) above the maximum permissible exposure (0.33 W/cm2 for 980 nm) is commonly used and severely limits its practical application. Methods: The highly emissive UCNP is first synthesized and then coated with mesoporous silica (MS) shell (UCMS). Next, the surface of UCMS is modified with the thioether (-S-BP) linker, leading to UCMS-S-BP nanoparticles. Finally, after the drug doxorubicin (Dox) is loaded into the pore channels of UCMS, the pore openings are blocked by the ß-cyclodextrin (ß-CD) gatekeeper through the association with the -S-BP linker (UCMS(Dox)-S-BP@ß-CD). Results: Upon 980 nm NIR light irradiation with an ultralow intensity of 0.30 W/cm2, it is found that the loaded Dox can be released through the cleavage of thioether linkers triggering dissociation of ß-CD gatekeepers. The in vitro results exhibited significantly therapeutic efficacy with 85.2% of HeLa cells killed in this study. Conclusions: An ultralow-intensity NIR light triggered on-demand drug release system has been developed by employing highly emissive UCNP and photocleavable linker with low bond dissociation energy to avoid the potential photodamage on healthy neighbor cells.


Assuntos
Liberação Controlada de Fármacos , Raios Infravermelhos , Nanopartículas/química , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Doxorrubicina/farmacologia , Endocitose/efeitos dos fármacos , Fluorescência , Células HeLa , Humanos , Nanopartículas/ultraestrutura , Espectrofotometria Ultravioleta , Termodinâmica
10.
Quant Imaging Med Surg ; 8(8): 724-732, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30306053
11.
Nat Commun ; 9(1): 2734, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013153

RESUMO

Photoacoustic (PA) computed tomography (PACT) benefits from genetically encoded probes with photochromic behavior, which dramatically increase detection sensitivity and specificity through photoswitching and differential imaging. Starting with a DrBphP bacterial phytochrome, we have engineered a near-infrared photochromic probe, DrBphP-PCM, which is superior to the full-length RpBphP1 phytochrome previously used in differential PACT. DrBphP-PCM has a smaller size, better folding, and higher photoswitching contrast. We have imaged both DrBphP-PCM and RpBphP1 simultaneously on the basis of their unique signal decay characteristics, using a reversibly switchable single-impulse panoramic PACT (RS-SIP-PACT) with a single wavelength excitation. The simple structural organization of DrBphP-PCM allows engineering a bimolecular PA complementation reporter, a split version of DrBphP-PCM, termed DrSplit. DrSplit enables PA detection of protein-protein interactions in deep-seated mouse tumors and livers, achieving 125-µm spatial resolution and 530-cell sensitivity in vivo. The combination of RS-SIP-PACT with DrBphP-PCM and DrSplit holds great potential for noninvasive multi-contrast deep-tissue functional imaging.


Assuntos
Proteínas de Bactérias/genética , Neoplasias Encefálicas/diagnóstico por imagem , Fígado/diagnóstico por imagem , Imagem Molecular/métodos , Técnicas Fotoacústicas/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Tomografia/métodos , Animais , Proteínas de Bactérias/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Deinococcus/genética , Deinococcus/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Expressão Gênica , Células HEK293 , Xenoenxertos , Humanos , Fígado/metabolismo , Camundongos , Camundongos Nus , Imagem Molecular/instrumentação , Técnicas Fotoacústicas/instrumentação , Plasmídeos/química , Plasmídeos/metabolismo , Engenharia de Proteínas , Mapeamento de Interação de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodopseudomonas/genética , Rodopseudomonas/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Tomografia/instrumentação
12.
Nat Commun ; 9(1): 2352, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907740

RESUMO

We have developed a single-breath-hold photoacoustic computed tomography (SBH-PACT) system to reveal detailed angiographic structures in human breasts. SBH-PACT features a deep penetration depth (4 cm in vivo) with high spatial and temporal resolutions (255 µm in-plane resolution and a 10 Hz 2D frame rate). By scanning the entire breast within a single breath hold (~15 s), a volumetric image can be acquired and subsequently reconstructed utilizing 3D back-projection with negligible breathing-induced motion artifacts. SBH-PACT clearly reveals tumors by observing higher blood vessel densities associated with tumors at high spatial resolution, showing early promise for high sensitivity in radiographically dense breasts. In addition to blood vessel imaging, the high imaging speed enables dynamic studies, such as photoacoustic elastography, which identifies tumors by showing less compliance. We imaged breast cancer patients with breast sizes ranging from B cup to DD cup, and skin pigmentations ranging from light to dark. SBH-PACT identified all the tumors without resorting to ionizing radiation or exogenous contrast, posing no health risks.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Suspensão da Respiração , Técnicas Fotoacústicas , Tomografia Computadorizada por Raios X , Adulto , Idoso , Artérias/diagnóstico por imagem , Artefatos , Mama/irrigação sanguínea , Neoplasias da Mama/irrigação sanguínea , Meios de Contraste/química , Técnicas de Imagem por Elasticidade , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Pessoa de Meia-Idade , Movimento (Física) , Imagens de Fantasmas , Projetos Piloto , Respiração , Veias/diagnóstico por imagem
13.
J Biomed Opt ; 23(3): 1-6, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29546734

RESUMO

Ultraviolet photoacoustic microscopy (UV-PAM) is a promising intraoperative tool for surgical margin assessment (SMA), one that can provide label-free histology-like images with high resolution. In this study, using a microlens array and a one-dimensional (1-D) array ultrasonic transducer, we developed a high-throughput multifocal UV-PAM (MF-UV-PAM). Our new system achieved a 1.6 ± 0.2 µm lateral resolution and produced images 40 times faster than the previously developed point-by-point scanning UV-PAM. MF-UV-PAM provided a readily comprehensible photoacoustic image of a mouse brain slice with specific absorption contrast in ∼16 min, highlighting cell nuclei. Individual cell nuclei could be clearly resolved, showing its practical potential for intraoperative SMA.


Assuntos
Microscopia Acústica/métodos , Técnicas Fotoacústicas/métodos , Cirurgia Assistida por Computador/métodos , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Desenho de Equipamento , Ensaios de Triagem em Larga Escala , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Transdutores , Ultrassonografia/instrumentação
14.
Opt Lett ; 43(4): 947-950, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29444034

RESUMO

Photoacoustic microscopy (PAM) with ultraviolet (UV) laser illumination has recently been demonstrated as a promising tool that provides fast, label-free, and multilayered histologic imaging of human breast tissue. Thus far, the axial resolution has been determined ultrasonically. To enable optically defined axial resolution, we exploit the Grüneisen relaxation (GR) effect. By imaging mouse brain slices, we show that GRUV-PAM reveals detailed information about three-dimensional cell nuclear distributions and internal structures, which are important diagnostic features for cancers. Due to the nonlinear effect, GRUV-PAM also provides better contrast in images of cell nuclei.


Assuntos
Núcleo Celular/metabolismo , Microscopia Acústica/métodos , Técnicas Fotoacústicas/métodos , Animais , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Camundongos , Microscopia Acústica/instrumentação , Técnicas Fotoacústicas/instrumentação
15.
ACS Biomater Sci Eng ; 4(10): 3478-3486, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33450795

RESUMO

An on-demand drug delivery nanoplatform based on mesoporous silica (mSiO2) coated upconversion nanoparticles (UCNP@mSiO2) with a novel near-infrared (NIR) light-triggered hydrophobic-to-hydrophilic switch nanovalve was fabricated. The surface of UCNP@mSiO2 was first immobilized with hydrophobic 2-diazo-1,2-naphthoquinones (DNQ) guest molecules. After doxorubicin hydrochloride (DOX, a universal anticancer drug) was loaded into channels of mSiO2 shell, ß-cyclodextrin (ß-CD) host molecules with a hydrophobic cavity were added as gatekeepers to cap DNQ stalk molecules via hydrophobic affinity, which may play a role in the OFF state of the nanovalve to prevent the drug from being released. Upon 980 nm light irradiation, a NIR light-triggered hydrophobic-to-hydrophilic switch, that transformed the hydrophobic guest DNQ into hydrophilic guest 3-indenecarboxylic acid (ICA), took place so that the capped ß-CD gatekeepers dissociated due to repulsion between ß-CD host (hydrophobic) and ICA guest (hydrophilic), activating the ON state of the nanovalves to release drug. The in vitro studies prove that the nanoplatform enables on-demand drug release to efficiently kill HeLa cell upon NIR light regulation. The in vivo experiment results further confirm that the nanoplatform with such fabricated nanovalves is able to inhibit tumor growth in mice. The designed nanovalves based on the novel NIR light-triggered hydrophobic-to-hydrophilic switch strategy therefore may shed new light on future development of on-demand cancer therapy.

16.
Chem Asian J ; 12(17): 2197-2201, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28675650

RESUMO

A novel photodynamic therapy nanoplatform based on mesoporous-silica-coated upconverting nanoparticles (UCNP) with electrostatic-driven ultrafast photosensitizer (PS) loading and 808 nm near infrared (NIR)-light-triggering capabilities has been fabricated. By positively charging inner channels of the mesoporous silica shell with amino groups, a quantitative dosage of negatively charged PS, exemplified with Rose Bengal (RB) molecules, can be loaded in 2 min. In addition, the electrostatic-driven technique simultaneously provides the platform with both excellent PS dispersity and leak-proof properties due to the repulsion between the same-charged molecules and the electrostatic attraction between different-charged PS and silica channel walls, respectively. The as-coated silica shell with an ultrathin thickness of 12±2 nm is delicately fabricated to facilitate ultrafast PS loading and efficient energy transfer from UCNP to PS. The outside surface of the silica shell is capped with hydrophilic ß-cyclodextrin, which not only enhances the dispersion of resulting nanoparticles in water but also plays a role of "gatekeeper", blocking the pore opening and preventing PS leaking. The in vitro cellular lethality experiment demonstrates that RB molecules can be activated to effectively generate singlet oxygen and kill cancer cells upon 808 nm NIR light irradiation.

17.
Nat Biomed Eng ; 1(5)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29333331

RESUMO

Imaging of small animals has played an indispensable role in preclinical research by providing high dimensional physiological, pathological, and phenotypic insights with clinical relevance. Yet pure optical imaging suffers from either shallow penetration (up to ~1-2 mm) or a poor depth-to-resolution ratio (~1/3), and non-optical techniques for whole-body imaging of small animals lack either spatiotemporal resolution or functional contrast. Here, we demonstrate that standalone single-impulse photoacoustic computed tomography (SIP-PACT) mitigates these limitations by combining high spatiotemporal resolution (125-µm in-plane resolution, 50 µs / frame data acquisition and 50-Hz frame rate), deep penetration (48-mm cross-sectional width in vivo), anatomical, dynamical and functional contrasts, and full-view fidelity. By using SIP-PACT, we imaged in vivo whole-body dynamics of small animals in real time and obtained clear sub-organ anatomical and functional details. We tracked unlabeled circulating melanoma cells and imaged the vasculature and functional connectivity of whole rat brains. SIP-PACT holds great potential for both pre-clinical imaging and clinical translation.

19.
Sci Rep ; 6: 39616, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000788

RESUMO

Metastasis causes as many as 90% of cancer-related deaths, especially for the deadliest skin cancer, melanoma. Since hematogenous dissemination of circulating tumor cells is the major route of metastasis, detection and destruction of circulating tumor cells are vital for impeding metastasis and improving patient prognosis. Exploiting the exquisite intrinsic optical absorption contrast of circulating melanoma cells, we developed dual-wavelength photoacoustic flow cytography coupled with a nanosecond-pulsed melanoma-specific laser therapy mechanism. We have successfully achieved in vivo label-free imaging of rare single circulating melanoma cells in both arteries and veins of mice. Further, the photoacoustic signal from a circulating melanoma cell immediately hardware-triggers a lethal pinpoint laser irradiation to kill it on the spot in a thermally confined manner without causing collateral damage. A pseudo-therapy study including both in vivo and in vitro experiments demonstrated the performance and the potential clinical value of our method, which can facilitate early treatment of metastasis by clearing circulating tumor cells from vasculature.


Assuntos
Melanoma/sangue , Melanoma/diagnóstico , Células Neoplásicas Circulantes , Neoplasias Cutâneas/sangue , Neoplasias Cutâneas/diagnóstico , Animais , Linhagem Celular , Feminino , Lasers , Luz , Camundongos , Camundongos Nus , Metástase Neoplásica , Técnicas Fotoacústicas , Análise Espectral
20.
ACS Appl Mater Interfaces ; 8(7): 4416-23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26816249

RESUMO

Novel core-shell-shell structured nanoparticles 75 nm in diameter with all-in-one "smart" functional capabilities for simultaneous photoresponsive drug release, photodynamic therapy, and cell imaging are designed and prepared. These nanoparticles consist of an upconversion (UC) emission core, a photosensitizer-embodied silica sandwich shell, and a ß-cyclodextrin (ß-CD) gated mesoporous silica outmost shell with drugs (Rhodamine B as a model) loaded inside. We show in this proof-of-concept demonstration that, under 980 nm near-infrared irradiation, UC 540 nm green light emissions were emitted for cell imaging, and 660 nm red light emissions were excited for activating photosensitizers to generate singlet oxygen, which could be exploited directly to kill cancer cells and simultaneously dissociate ß-CD gatekeeper to release drugs. The preliminary results reported here will shed new light on the future design and applications of multifunctional platforms for cancer therapy and diagnostic.


Assuntos
Liberação Controlada de Fármacos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Rodaminas/química , Células HeLa , Humanos , Raios Infravermelhos , Imagem Molecular/métodos , Nanopartículas/uso terapêutico , Neoplasias/patologia , Fotoquimioterapia/métodos , Rodaminas/uso terapêutico , Oxigênio Singlete/química , beta-Ciclodextrinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA