RESUMO
Layered oxides with ultrahigh nickel content are considered promising high energy cathode materials. However, their cycle stability is constrained by a series of heterogeneous structural transformations during the complex solid-state lithiation process. By in-depth investigation into the solid-state lithiation process of LiNi0.92Co0.04Mn0.04O2, it is found that the protruded parts on the surface of precursor particles tend to be surrounded by locally excessive LiOH, which promotes the formation of a rigid and dense R 3 - m ${{\rm { R}}\mathrel{\mathop{{\rm { 3}}}\limits^{{\rm -}}}{\rm { m}}}$ shell during the early stage of lithiation process. The shell will hinder the diffusion of lithium and topotactic lithiation within the particles, culminating in spatially heterogeneous intermediates that can impair the electrochemical properties of the cathode material. The spheroidization of the precursor can enhance uniformity in structural evolution during solid-phase lithiation. Ultrahigh nickel cathodes derived from spherical precursors demonstrate high initial discharge specific capacity (234.2â mAh g-1, in the range of 2.7-4.3â V) and capacity retention (89.3 % after 200â cycles), significantly superior to the non-spherical samples. This study not only sheds light on the intricate relationship between precursor shape and structural transformation but also introduces a novel strategy for enhancing cathode performance through precursor spheroidization.
RESUMO
The sluggish ion-transport in electrodes and low utilization of active materials are critical limitations of organic cathodes, which lead to the slow reaction dynamics and low specific capacity. In this study, the hierarchical tube is constructed by iron-hexaazatrinaphthalene tricarboxylic acid coordination polymer (Fe-HATNTA), using HATNTA as the self-engaged template to coordinate with Fe2+ ions. This Fe-HATNTA tube with hierarchical porous structure ensures the sufficient contact between electrolyte and active materials, shortens the diffusion distance, and provides more favorable transport pathways for ions. When employed as the cathode for rechargeable Li-ion batteries, Fe-HATNTA delivers a high specific capacity (244 mAh g-1 at 50 mA g-1 , 91% of theoretical capacity), excellent rate capability (128 mAh g-1 at 9 A g-1 ), and a long-term cycle life (73.9% retention over 3000 cycles at 5 A g-1 ). Moreover, the Li+ ions storage and conduction mechanisms are further disclosed by the ex situ and in situ characterizations, kinetic analyses, and theoretical calculations. This work is expected to boost further enthusiasm for developing the hierarchical structured metal-organic coordination polymers with superb ionic storage and transport as high-performance organic cathodes.
RESUMO
Currently, SO2-induced catalyst deactivation from the sulfation of active sites turns to be an intractable issue for selective catalytic reduction (SCR) of NOx with NH3 at low temperatures. Herein, SO2-tolerant NOx reduction has been originally demonstrated via tailoring the electron transfer between surface iron sulfate and subsurface ceria. Engineered from the atomic layer deposition followed by the pre-sulfation method, the structure of surface iron sulfate and subsurface ceria was successfully constructed on CeO2/TiO2 catalysts, which delivered improved SO2 resistance for NOx reduction at 250 °C. It was demonstrated that the surface iron sulfate inhibited the sulfation of subsurface Ce species, while the electron transfer from the surface Fe species to the subsurface Ce species was well retained. Such an innovative structure of surface iron sulfate and subsurface ceria notably improved the reactivity of NHx species, thus endowing the catalysts with a high NOx reaction efficiency in the presence of SO2. This work unraveled the specific structure effect of surface iron sulfate and subsurface ceria on SO2-toleant NOx reduction and supplied a new point to design SO2-tolerant catalysts by modulating the unique electron transfer between surface sulfate species and subsurface oxides.
Assuntos
Amônia , Elétrons , Amônia/química , Ferro , Oxirredução , SulfatosRESUMO
The single-crystal Ni-rich Li(NixCoyMn1-x-y)O2 cathode (NCM) demonstrates better cycle performance, enhanced tap density and improved mechanical structure stability, compared with polycrystalline NCM.However, limited Li+ transports, (003) plane slips and microcracks in large single particles hinder rate capability and cycle performance. To overcome these shortcomings,single-crystal NCM cathodes have been modified by nanosized tetragonal BaTiO3. Due to the dielectric properties, BaTiO3 particles induce electric field concentration at the BaTiO3-NCM-electrolyte interface. Thus, a large amount of lithium vacancies can be formed, providing sufficient sites for the hopping diffusion of lithium ions, thereby significantly enhancing the diffusion coefficient of Li+. Moreover, the redistribution of charges can inhibit the formation and accumulation of cathode-electrolyte-interface. Owing to the synergetic effect of BaTiO3, the BT-modified single-crystal NCM with the optimized loading shows a remarkable initial discharge capacity of 138.5 mAh g-1 and maintains 53.8% of its initial discharge capacity after 100 cycles under 5C at 4.5 V cut-off voltage. Overall, the proposed dielectric cathode-electrolyte-interface strategy can enhance Li+ ion transport and stabilize the interface structure, leading to improved rate performance. Meanwhile, the diffusion-induced state of charge gradient can also be inhibited, resulting in high structure stability of single-crystal NCMs under high rate and cut-off voltage cycling.
RESUMO
Abstract Clostridium difficile infection (CDI) is the most common hospital acquired diarrheal disease with its increasing incidence and mortality rate globally. DNA Gyrase B (GyrB) is a key component of DNA replication process across all bacterial genera; thus, this offers a potential target for the treatment of CDI. In the present study, several virtual screening approaches were employed to identify a novel C. difficile GyrB inhibitor. The 139 known metabolites were screened out from the 480 flavonoids in PhytoHub database. Molinspiration and PROTOX II servers were used to calculate the ADME properties and oral toxicity of the metabolites, whereas mutagenicity, tumorigenicity, irritant, and reproductive effect were predicted using DataWarrior program. The binding mode and the binding efficiency of the screened flavonoids against the GyrB were studied using FlexX docking program. From virtual screening of 139 metabolites, we found 25 flavonoids with no mutagenicity, tumorigenicity, irritant, and reproductive effect. Docking study suggested that flavonoids 1030 ((-)-epicatechin 3'-O-sulfate), 1032 ((-)-epicatechin 4'-O-sulfate), 1049 (3'-O-methyl-(-)-epicatechin 4-O-sulfate), 1051 (3'-O-methyl-(-)-epicatechin 7-O-sulfate), 1055 (4'-O-methyl-(-)-epicatechin 7-O-sulfate) and 1317 (quercetin sulfate) have significantly higher binding affinity than the known GyrB inhibitor novobiocin. The results from molecular dynamics simulation and free energy calculations based on solvated interaction energy suggested that (-)-epicatechin 3'-O-sulfate could be a potential drug candidate in the management of CDI.
Assuntos
Flavonoides/uso terapêutico , Infecções por Clostridium/terapia , DNA Girase/uso terapêutico , Ensaios de Triagem em Larga EscalaRESUMO
Developing multifunctional nanocomposites for a pH-responsive controlled dual-drug delivery is still a huge challenge. Herein, we report a gentle and simple method for growing metal-organic frameworks (MOFs) that can load two anticancer drugs, namely DOX and 5-FU (doxorubicin and 5-fluorouracil), on the surface of upconversion nanoparticles (UCNPs) by the reactions of Schiff bases and electrostatic adsorption. The resulting pH-responsive UCMOFs@D@5 nanosystem showed effective dual-drug release by the cleavage of chemical bonds and the disruption of the MOF structure under acidic conditions. Moreover, the final nanosystem UCMOFs@D@5 showed much higher cytotoxicity in comparison with UCMOFs@D and UCMOFs@5, which loaded only one kind of drug, respectively, after being incubated with human cervical cancer (HeLa) cells, indicating that Dox and 5-FU released from the final nanosystem had synergistic effects on cytotoxicity. Cellular uptake studies showed that UCMOFs@D@5 was well uptaken by HeLa cells and has potential for bioimaging applications in intracellular fluorescence imaging with high-contrast, and is beneficial for the intracellular localization of anti-cancer drugs. In addition, the nanosystem can be successfully applied in T1-weighted magnetic resonance imaging. Therefore, we developed a visualized tracking agent combined with MOFs to load two anticancer drugs to form a nanosystem for diagnosis and synergistic treatment, thus achieving the bioimaging and stimulation-responsive dual-drug release.
Assuntos
Antibióticos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Fluoruracila/farmacologia , Estruturas Metalorgânicas/química , Nanopartículas/química , Antibióticos Antineoplásicos/química , Antimetabólitos Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Fluoruracila/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
Herein, inspired by the structure of a dandelion, we develop a fresh preparation of an upconversion nanoplatform (UCNPs@C60-DOX-FA). The target part folic acid (FA) modified with ß-CD-NH2 can enhance dispersibility and afford the nanoplatform to arrive at the tumor and enter cancer cells easily. After the mouse breast cancer (4T1) cell incubation with the nanoplatform, the abundant glutathione (GSH) in cells cuts the -S-S- bonds like scissors, just as dandelion encountering wind, and the drug doxorubicin (DOX) flows into the nucleus for chemotherapy. Meanwhile, the photodynamic therapy (PDT) effect is enhanced with the decrease content of GSH, which promotes the reactive oxygen species to accumulation. The synergistic chemotherapy and PDT are outstanding in killing 4T1 cells. The rest part UCNPs@C60 possesses excellent biocompatibility and low cytotoxicity. As for cancer diagnosis, UCNPs can be used as a visual imaging agent. Benefited by the delicate structure, all of the functional parts of the nanoplatform go and coordinate well. On account of an FA ligand and the -S-S- bond, the nanoplatform works very well in 4T1 cells while it is able to avoid damage to normal cells since the FA receptors and GSH have overexpression in the 4T1 cells. Thus, this work shows an accessible strategy to design a dandelion-like hierarchical nanoplatform for potential bioimaging-guided synergistic chemo-photodynamic therapy.
RESUMO
Exploration of effective metal/support combinations and new fabrication approaches is attractive in the catalytic oxidation of HCHO. In this study, we proposed graphitic carbon nitride (g-C3N4) as a non-metal oxide based support to co-load Pt and MnOx through room-temperature photodeposition and in turn applied for HCHO oxidation. Here, Pt was the active component, while MnOx was the cocatalyst to compensate the shortage of active oxygen on g-C3N4. g-C3N4 was found as a promising support for the high dispersion of Pt and MnOx. Well dispersed Pt nanoparticles with an average diameter of 1.8 nm were obtained, which were highly favorable for the loading of MnOx as MnOx-Pt/g-C3N4. Catalytic performance results indicated that the limited HCHO conversion over g-C3N4 and Pt/g-C3N4 was significantly promoted with the introduction of MnOx, with an optimum MnOx amount of 3.0 wt%. The developed catalysts remained highly stable for 30 h. The enhanced catalytic activity of MnOx-Pt/g-C3N4 was due to the increased number of active oxygen species with the introduction of MnOx and the efficient transfer of electrons from g-C3N4 to Pt. Compared to the traditional impregnation, photodeposition process avoids the application of H2 and high temperatures, scoring in favor of its green and safe nature. This study can concomitantly provide a new way for the design and fabrication of a non-metal oxide based support for the efficient HCHO catalytic oxidation and the application of the photocatalytic process in catalyst fabrication.
RESUMO
Nanoparticle-based theranostics combines tumor imaging and cancer therapy in one platform, but the synthesis of theranostic agents is impeded by chemical groups on the surface and the size and morphology of the components. Strategies to construct a multifunctional platform for bioimaging and photothermal therapy (PTT) are urgently needed. A new upconversion-magnetic agent (FeCUPs) based on hollow carbon spheres, which is both a photothermal agent and a dual carrier of luminescent and magnetic nanoparticles, provides an effective approach for tumor elimination. Methods: The morphology of FeCUPs was characterized for the construction and size adjustment of the theranostic agent using transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy and high angle annular dark field scanning transmission electron microscopy. The distribution of FeCUPs was tracked under in-situ upconversion luminescence (UCL) imaging and magnetic resonance imaging (MRI) in vivo. Photothermal therapy was carried out on tumor-bearing mice, after which the toxicity of PTT was evaluated by a blood biochemistry test and histological section analysis. Results: Stable and uniform loading of luminescent nanocomposites on three-dimensional carbon materials is reported for the first time. Based on the mechanism of synthesis, the size of the hybrid particles was adjusted from micrometers to nanometers. External magnetic field-enhanced photothermal therapy with multi-model imaging was accomplished using FeCUPs. Moreover, no cancer recurrence was found during 14 days of recovery without PTT. Conclusions: Hollow carbon spheres, photothermal agents loaded with upconversion nanoparticles inside and magnetic nanoparticles outside were prepared for photothermal therapy. The aggregation of FeCUPs in tumors by the local magnetic field was verified by MRI and UCL imaging, and PTT was enhanced.
Assuntos
Diagnóstico por Imagem/métodos , Hipertermia Induzida/métodos , Nanopartículas/administração & dosagem , Neoplasias/diagnóstico , Neoplasias/terapia , Fototerapia/métodos , Nanomedicina Teranóstica/métodos , Animais , Carbono/administração & dosagem , Carbono/farmacocinética , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Medições Luminescentes , Imageamento por Ressonância Magnética , Magnetismo , Camundongos , Nanopartículas/química , Nanopartículas/ultraestruturaRESUMO
In this study, halloysites, one of the most abundant clays, with hollow nanotube features were reconstructed by selectively etching silica from the outermost layer of the halloysites associated with unzipping the nanotubes to nanosheets via ball milling, and then, nickel nanoparticles were confined by the resulting defects in the nanosheets to boost charge transfer by a wet impregnation method. The obtained materials were developed as coke-resistant defect-confined Ni-based nanosheet-like catalysts for CO2 reforming of methane (CRM) for the first time. The as-prepared catalyst exhibited good coke and sintering resistance performance in CRM, and especially, there was almost no loss of activity even after a 20 h stability test due to the strong interaction between the Ni nanoparticles and the support. The present investigations may provide a new pathway for the design and application of highly coke-resistant CRM catalysts.
RESUMO
Exploring novel drug delivery systems with good stability and new structure to integrate pillararene and upconversion nanoparticles (UCNPs) into one system continues to be an important challenge. Herein, we report a novel preparation of a supramolecular upconversion nanosystem via the host-guest complexation based on carboxylate-based pillar[5]arene (WP5) and 15-carboxy-N,N,N-trialkylpentadecan-1-ammonium bromide (1)-functionalized UCNPs to produce WP5â1-UCNPs that can be loaded with the chemotherapeutic drug doxorubicin (DOX). Importantly, the WP5 on the surface of the drug-loaded nanosystem can be efficiently protonated under acidic conditions, resulting in the collapse of the nanosystem and drug release. Moreover, cellular uptake confirms that the nanosystem can enter human cervical cancer (HeLa) cells, resulting in drug accumulation in the cells. More importantly, cytotoxicity experiments demonstrated the excellent biocompatibility of WP5â1-UCNPs without loading DOX and that the nanosystem DOX-WP5â1-UCNPs exhibited an ability of killing HeLa cells effectively. We also investigated magnetic resonance imaging and upconversion luminescence imaging, which may be employed as visual imaging agents in cancer diagnosis and treatment. Thus, in the present work, we show a simple yet powerful strategy to combine UCNPs and pillar[5]arene to produce a unified nanosystem for dual-mode bioimaging-guided therapeutic applications.
Assuntos
Nanopartículas , Sistemas de Liberação de Medicamentos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Solubilidade , ÁguaRESUMO
An anti-cancer campaign might not be easily achieved through a single therapeutic modality. Collaboration of multimodal therapies and diagnosis could be vital to win the battle against cancer. In this context, we synthesized a multifunctional theranostic nanocomposite (UCNP-BPNS) from upconversion nanoparticles (UCNP) and black phosphorus nanosheets (BPNS) for synergistic photothermal/photodynamic therapies in vitro and dual modal imaging. Core-shell UCNP (NaYF4:Yb,Er@NaGdF4) and BPNS were synthesized using solvo-thermal and liquid exfoliation methods, respectively, and then covalently conjugated after UCNP was modified with polyacrylic acid and BPNS with methoxypolyethylene glycol amine. The experimental results validate that the nanocomposite exhibited a good photothermal therapy (PTT) effect under 808 nm laser irradiation, endorsing the apparent heat conversion effect of BPNS. Besides, a very good photodynamic therapy (PDT) effect was achieved under 980 nm laser irradiation of the nanocomposite due to Förster resonance energy transfer from UCNP to BPNS that generated singlet oxygen (1O2). The synergistic PTT/PDT therapeutic effect provided by UCNP-BPNS under simultaneous 808 and 980 nm laser irradiation was significantly higher than either PTT or PDT alone. Furthermore, due to the merit of the outer shell coated on the surface of the core of UCNP, the nanocomposite exhibited good potential for magnetic resonance and upconversion luminescence imaging. These results demonstrated that our multifunctional nanocomposite has promising theranostic efficacy under near infrared laser irradiation.
RESUMO
A double-mesoporous nanosystem was synthesized for treating as well as imaging cancer cells by using a simple and mild method. The mesoporous platinum (Pt) nanoparticles acting as a core show excellent photothermal effect under illumination with an 808 nm near infrared (NIR) laser. The mesoporous silica linked with a lanthanide (Gd) complex acting as a shell displays potential applications as a contrast agent for magnetic resonance imaging (MRI). The final mPt@mSiO2-GdDTPA nanosystems exhibit good biocompatibility in vitro and in vivo, when investigated by methyl thiazolyl tetrazolium assay and histological and serum biochemistry analysis. The investigation of the photothermal effect shows that the mPt@mSiO2-GdDTPA nanosystems exhibit an excellent photothermal therapy effect on HeLa cells and tumor-bearing mice. As theranostic agents, the nanosystems display a higher r1 value than the medical contrast agent magnevist and were successfully applied to in vivo MRI of Kunming mice. Therefore, the first systematic study on the photothermal effect of nanosystems based on mesoporous Pt nanoparticles does encourage the potential applications of metal nanoparticles and hybrid nanocomposites for cancer bioimaging and therapy.
Assuntos
Elementos da Série dos Lantanídeos , Imageamento por Ressonância Magnética , Nanopartículas Metálicas , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Fototerapia , Platina , Animais , Células HeLa , Humanos , Camundongos , Nanomedicina Teranóstica , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
A multifunctional cancer therapy nanocomposite was proposed and synthesized by linking the pH-responsive SH-PEG-DOX prodrug onto gold nanocrystals that were grown in situ on the surface of upconversion nanoparticles (UCNPs). In the structure of the SH-PEG-DOX prodrug, a hydrazone bond was utilized for subsequent pH-responsive drug release in the intracellular acidic microenvironment of cancer cells. This innovative assembly method is facile and mild, and can be used to obtain nanocomposites of UCNPs and gold, which show excellent photostability and biocompatibility. The final UCNPs@Au-DOX nanocomposites offer efficient treatment effects in vitro under irradiation with an 808 nm laser due to the synergistic effect of chemotherapy and photothermal therapy. In addition, the UCNPs@Au-DOX nanocomposites show excellent intracellular locating ability via upconversion luminescence (UCL) imaging with Er3+ ions and magnetic resonance imaging (MRI) with Gd3+ ions, indicating that they have potential as a visual tracking agent in cancer treatment. Therefore, the presented bioimaging-guided multifunctional synergistic therapy nanocomposites are promising tools for imaging-guided cancer therapy.
Assuntos
Doxorrubicina/administração & dosagem , Ouro , Nanopartículas Metálicas , Fotoquimioterapia , Cristalização , Liberação Controlada de Fármacos , Células HeLa , Humanos , Nanocompostos , Microambiente TumoralRESUMO
We designed a unique and novel bio-nanoplatform based on Pt-Ni nanoframes (PNnf) functionalized with carbon dots via the EDC/NHS coupling chemistry. The PNnf with open three-dimensional surfaces exhibited excellent water solubility after polyethylenimine modification. Due to low cytotoxicity and excellent biocompatibility, the bio-nanoplatforms were firstly used for MCF-7 cell imaging in vitro. More importantly, the design strategy can be readily generalized to facilitate other multi-functional bio-nanoplatforms for biological and biomedical applications.
RESUMO
Nanoparticles are regularly used as contrast agents in bioimaging. Unlike other agents such as composite materials, nanoparticles can also be used for treating as well as imaging disease. Here we synthesized lanthanide functionalized gold nanoparticles that can be used for both imaging and therapy in vivo. That is a multifunctional nanoplatform was developed based on a simple and versatile method, by incorporating 10-nm gold nanoparticles and lanthanide ions (Gd(3+) and Yb(3+)), denoted as LnAu nanoparticles hereby. The LnAu nanoparticles were then surface-modified using a PEGylated amphiphilic polymer (C18MH-mPEG), and the resulting PEG modified LnAu nanoparticles (PEG-LnAu) display good monodispersion in water and good solubility in biological media. Due to the low toxicity in vitro and in vivo (as determined by a cell viability assay and histological and serum biochemistry analysis), the PEG-LnAu nanoparticles can be successfully applied to in vivo magnetic resonance imaging (MRI), in vivo computed tomography (CT) imaging and photothermal therapy (PTT) for tumor-bearing mice. Therefore, the present work developed an easy yet powerful strategy to combine lanthanide ions and gold nanoparticles to a unified nanoplatform for integrating bioimaging and therapy.
Assuntos
Imageamento por Ressonância Magnética/métodos , Nanopartículas Metálicas/uso terapêutico , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/terapia , Fototerapia/métodos , Nanomedicina Teranóstica/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/química , Meios de Contraste/síntese química , Ouro/química , Ouro/uso terapêutico , Células HeLa , Humanos , Elementos da Série dos Lantanídeos/química , Elementos da Série dos Lantanídeos/uso terapêutico , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Camundongos , Polietilenoglicóis/química , Resultado do TratamentoRESUMO
Lanthanide (Ln(3+) )-doped upconversion nanoparticles (UCNPs) as a new generation of multimodal bioprobes have attracted great interest for theranostic purpose. Herein, red emitting nonstoichiometric Na0.52 YbF3.52 :Er UCNPs of high luminescence intensity and color purity are synthesized via a facile solvothermal method. The red UC emission from the present nanophosphors is three times more intense than the well-known green emission from the ≈30 nm sized hexagonal-phase NaYF4 :Yb,Er UCNPs. By utilizing Na0.52 YbF3.52 :Er@SrF2 UCNPs as multifunctional nanoplatforms, highly efficient in vitro and in vivo 915 nm light-triggered photodynamic therapies are realized for the first time, with dramatically diminished overheating yet similar therapeutic effects in comparison to those triggered by 980 nm light. Moreover, by virtue of the high transverse relaxivity (r 2 ) and the strong X-ray attenuation ability of Yb(3+) ions, these UCNPs also demonstrate good performances as contrast agents for high contrast magnetic resonance and X-ray computed tomography dual-modal imaging. Our research shows the great potential of the red emitting Na0.52 YbF3.52 :Er UCNPs for multimodal imaging-guided photodynamic therapy of tumors.
Assuntos
Nanopartículas/química , Fotoquimioterapia/métodos , Tomografia Computadorizada por Raios X/métodos , Meios de Contraste/química , Fluoretos/química , Luminescência , Itérbio/químicaRESUMO
Iron ion (Fe(3+)) which is the physiologically most abundant and versatile transition metal in biological systems, has been closely related to many certain cancers, metabolism, and dysfunction of organs, such as the liver, heart, and pancreas. In this Research Article, a novel Nile red derivative (NRD) fluorescent probe was synthesized and, in conjunction with polymer-modified core-shell upconversion nanoparticles (UCNPs), demonstrated in the detection of Fe(3+) ion with high sensitivity and selectivity. The core-shell UCNPs were surface modified using a synthesized PEGylated amphiphilic polymer (C18PMH-mPEG), and the resulting mPEG modified core-shell UCNPs (mPEG-UCNPs) show good water solubility. The overall Fe(3+)-responsive upconversion luminescence nanostructure was fabricated by linking the NRD to the mPEG-UCNPs, denoted as mPEG-UCNPs-NRD. In the nanostructure, the core-shell UCNPs, NaYF4:Yb,Er,Tm@NaGdF4, serve as the energy donor while the Fe(3+)-responsive NRD as the energy acceptor, which leads to efficient luminescence resonance energy transfer (LRET). The mPEG-UCNPs-NRD nanostructure shows high selectivity and sensitivity for detecting Fe(3+) in water. In addition, benefited from the good biocompatibility, the nanostructure was successfully applied for detecting Fe(3+) in living cells based on upconversion luminescence (UCL) from the UCNPs. Furthermore, the doped Gd(3+) ion in the UCNPs endows the mPEG-UCNPs-NRD nanostructure with effective T1 signal enhancement, making it a potential magnetic resonance imaging (MRI) contrast agent. This work demonstrates a simple yet powerful strategy to combine metal ion sensing with multimodal bioimaging based on upconversion luminescence for biomedical applications.
Assuntos
Técnicas Biossensoriais/métodos , Espaço Intracelular/metabolismo , Ferro/análise , Luminescência , Imageamento por Ressonância Magnética/métodos , Nanoestruturas/química , Oxazinas/química , Morte Celular , Sobrevivência Celular , Células HeLa , Humanos , Nanoestruturas/ultraestrutura , Espectrofotometria UltravioletaRESUMO
Carbon dots (CDs) have shown great promise in a wide range of bioapplications due to their tunable optical properties and noncytotoxicity. For the first time, a rational strategy was designed to construct new bio-nanoplatforms based on carboxylic acid terminated CDs (CDs-COOH) conjugating with amino terminated F-substituted nano-hydroxyapatite (NFAp) via EDC/NHS coupling chemistry. The monodisperse NFAp nanorods were functionalized with o-phosphoethanolamine (PEA) to provide them with amino groups and render them hydrophilic with respect to the ligand exchange process. The CDs-COOH@PEA-NFAp conjugates exhibits bright blue fluorescence under UV illumination, excellent photostability and colloidal stability. Due to their low cytotoxicity and good biocompatibility as determined by methyl thiazolyl tetrazolium (MTT) assay, the CDs-COOH@PEA-NFAp conjugates were successfully applied as bio-nanoplatforms to MCF-7 breast cancer cells for cellular imaging in vitro. More importantly, the functional CDs conjugated to NFAp provide an extended and general approach to construct different water-soluble NFAp bio-nanoplatforms for other easily functionalised luminescent materials. Therefore, these green nanoplatforms may be a prospective candidate for applications in bioimaging or targeted biological therapy and drug delivery.
Assuntos
Carbono/química , Durapatita/química , Nanopartículas/química , Células CACO-2 , Ácidos Carboxílicos/química , Coloides/química , Sistemas de Liberação de Medicamentos , Etanolaminas/química , Células Hep G2 , Humanos , Ligantes , Luminescência , Células MCF-7 , Pontos Quânticos/química , Solubilidade , Raios UltravioletaRESUMO
We have constructed a multifunctional nanoprobe with sensing and imaging properties by using hollow mesoporous silica coated upconversion nanoparticles (UCNPs) and Hg(2+) responsive ruthenium (Ru) complex. The Ru complex was loaded into the hollow mesoporous silica and the UCNPs acted as an energy donor, transferring luminescence energy to the Ru complex. Furthermore, polyethylenimine (PEI) was assembled on the surface of mesoporous silica to achieve better hydrophilic and bio-compatibility. Upon addition of Hg(2+), a blue shift of the absorption peak of the Ru complex is observed and the energy transfer process between the UCNPs and the Ru complex was blocked, resulting in an increase of the green emission intensity of the UCNPs. The un-changed 801 nm emission of the nanoprobe was used as an internal standard reference and the detection limit of Hg(2+) was determined to be 0.16 µM for this nanoprobe in aqueous solution. In addition, based on the low cytotoxicity as studied by CCK-8 assay, the nanoprobe was successfully applied for cell imaging and small animal imaging. Furthermore, when doped with Gd(3+) ions, the nanoprobe was successfully applied to in vivo magnetic resonance imaging (MRI) of Kunming mice, which demonstrates its potential as a MRI positive-contrast agent. Therefore, the method and results may provide more exciting opportunities to afford nanoprobes with multimodal bioimaging and multifunctional applications.