Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Adv Mater ; 33(36): e2100074, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34297448

RESUMO

The high viscosity and low fluidity of heavy crude oil hinder its sorption by conventional porous sorbents, so the efficient clean-up of such heavy crude oil spills is challenging. Recently, Joule heating has been emerging as a new tool to reduce the viscosity of heavy crude oil dramatically. However, this direct-contact heating approach presents a potential risk due to the high voltage applied. To develop a non-contact recovery of viscous crude oil, here, a new approach for the fabrication of a series of ferrimagnetic sponges (FMSs) with hydrophobic porous channels is reported, whose surface can be remotely heated to 120 °C within 10 s under an alternating magnetic field (f = 274 kHz, H = 30 kA m-1 ). Compared with the solar-driven superficial heating, the integral magnetic heating in FMSs can result in a higher internal temperature of the sponges because of the confinement of thermal transport in the porous channels, which contributes to a dramatic decrease in oil viscosity and a significant increase in oil flow into the pores of FMSs. Furthermore, FMSs assembled with a self-priming pump can achieve continuous recovery of viscous crude oil (33.05 g h-1 cm-2 ) via remotely magnetic heating.

2.
Nat Nanotechnol ; 12(5): 434-440, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28369045

RESUMO

The clean-up of viscous crude-oil spills is a global challenge. Hydrophobic and oleophilic oil sorbents have been demonstrated as promising candidates for oil-spill remediation. However, the sorption speeds of these oil sorbents for viscous crude oil are rather limited. Herein we report a Joule-heated graphene-wrapped sponge (GWS) to clean-up viscous crude oil at a high sorption speed. The Joule heat of the GWS reduced in situ the viscosity of the crude oil, which prominently increased the oil-diffusion coefficient in the pores of the GWS and thus speeded up the oil-sorption rate. The oil-sorption time was reduced by 94.6% compared with that of non-heated GWS. Besides, the oil-recovery speed was increased because of the viscosity decrease of crude oil. This in situ Joule self-heated sorbent design will promote the practical application of hydrophobic and oleophilic oil sorbents in the clean-up of viscous crude-oil spills.

3.
Adv Mater ; 28(47): 10459-10490, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27731513

RESUMO

Oil sorbents play a very important part in the remediation processes of oil spills. To enhance the oil-sorption properties and simplify the oil-recovery process, various advanced oil sorbents and oil-collecting devices based on them have been proposed recently. Here, we firstly discuss the design considerations for the fabrication of oil sorbents and describe recently developed oil sorbents based on modification strategy. Then, recent advances regarding oil sorbents mainly based on carbon materials and swellable oleophilic polymers are also presented. Subsequently, some additional properties are emphasized, which are required by oil sorbents to cope with oil spills under extreme conditions or to facilitate the oil-collection processes. Furthermore, some oil-collection devices based on oil sorbents that have been developed recently are shown. Finally, an outlook and challenges for the next generation of oil-spill-remediation technology based on oil-sorbents materials are given.

4.
Adv Mater ; 28(4): 722-8, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26618615

RESUMO

A stretchable and multiple-force-sensitive electronic fabric based on stretchable coaxial sensor electrodes is fabricated for artificial-skin application. This electronic fabric, with only one kind of sensor unit, can simultaneously map and quantify the mechanical stresses induced by normal pressure, lateral strain, and flexion.


Assuntos
Pele Artificial , Eletrodos , Eletrônica , Nanofios/química , Poliuretanos/química , Povidona/química , Pressão , Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA