Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cancer Cell ; 42(3): 413-428.e7, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38402609

RESUMO

KRASG12C inhibitors (adagrasib and sotorasib) have shown clinical promise in targeting KRASG12C-mutated lung cancers; however, most patients eventually develop resistance. In lung patients with adenocarcinoma with KRASG12C and STK11/LKB1 co-mutations, we find an enrichment of the squamous cell carcinoma gene signature in pre-treatment biopsies correlates with a poor response to adagrasib. Studies of Lkb1-deficient KRASG12C and KrasG12D lung cancer mouse models and organoids treated with KRAS inhibitors reveal tumors invoke a lineage plasticity program, adeno-to-squamous transition (AST), that enables resistance to KRAS inhibition. Transcriptomic and epigenomic analyses reveal ΔNp63 drives AST and modulates response to KRAS inhibition. We identify an intermediate high-plastic cell state marked by expression of an AST plasticity signature and Krt6a. Notably, expression of the AST plasticity signature and KRT6A at baseline correlates with poor adagrasib responses. These data indicate the role of AST in KRAS inhibitor resistance and provide predictive biomarkers for KRAS-targeted therapies in lung cancer.


Assuntos
Acetonitrilas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Piperazinas , Pirimidinas , Animais , Camundongos , Humanos , Proteínas Proto-Oncogênicas p21(ras) , Genes ras , Mutação
2.
Blood ; 143(2): 124-138, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37748139

RESUMO

ABSTRACT: Aged hematopoietic stem cells (HSCs) exhibit compromised reconstitution capacity. The molecular mechanisms behind this phenomenon are not fully understood. Here, we observed that the expression of FUS is increased in aged HSCs, and enforced FUS recapitulates the phenotype of aged HSCs through arginine-glycine-glycine-mediated aberrant FUS phase transition. By using Fus-gfp mice, we observed that FUShigh HSCs exhibit compromised FUS mobility and resemble aged HSCs both functionally and transcriptionally. The percentage of FUShigh HSCs is increased upon physiological aging and replication stress, and FUSlow HSCs of aged mice exhibit youthful function. Mechanistically, FUShigh HSCs exhibit a different global chromatin organization compared with FUSlow HSCs, which is observed in aged HSCs. Many topologically associating domains (TADs) are merged in aged HSCs because of the compromised binding of CCCTC-binding factor with chromatin, which is invoked by aberrant FUS condensates. It is notable that the transcriptional alteration between FUShigh and FUSlow HSCs originates from the merged TADs and is enriched in HSC aging-related genes. Collectively, this study reveals for the first time that aberrant FUS mobility promotes HSC aging by altering chromatin structure.


Assuntos
Envelhecimento , Células-Tronco Hematopoéticas , Camundongos , Animais , Envelhecimento/fisiologia , Fenótipo , Células-Tronco Hematopoéticas/metabolismo , Cromatina/metabolismo , Glicina/metabolismo
3.
Haematologica ; 108(10): 2677-2689, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37165848

RESUMO

Aged hematopoietic stem cells (HSC) exhibit compromised reconstitution capacity and differentiation-bias towards myeloid lineage, however, the molecular mechanism behind it remains not fully understood. In this study, we observed that the expression of pseudouridine (Ψ) synthase 10 is increased in aged hematopoietic stem and progenitor cells (HSPC) and enforced protein of Ψ synthase 10 (PUS10) recapitulates the phenotype of aged HSC, which is not achieved by its Ψ synthase activity. Consistently, we observed no difference of transcribed RNA pseudouridylation profile between young and aged HSPC. No significant alteration of hematopoietic homeostasis and HSC function is observed in young Pus10-/- mice, while aged Pus10-/- mice exhibit mild alteration of hematopoietic homeostasis and HSC function. Moreover, we observed that PUS10 is ubiquitinated by E3 ubiquitin ligase CRL4DCAF1 complex and the increase of PUS10 in aged HSPC is due to aging-declined CRL4DCAF1- mediated ubiquitination degradation signaling. Taken together, this study for the first time evaluated the role of PUS10 in HSC aging and function, and provided a novel insight into HSC rejuvenation and its clinical application.


Assuntos
Transferases Intramoleculares , RNA , Animais , Camundongos , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Envelhecimento
4.
Cancers (Basel) ; 15(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36900401

RESUMO

BACKGROUND: Gastric cancer is a malignant tumor with high morbidity and mortality. Therefore, the accurate recognition of prognostic molecular markers is the key to improving treatment efficacy and prognosis. METHODS: In this study, we developed a stable and robust signature through a series of processes using machine-learning approaches. This PRGS was further experimentally validated in clinical samples and a gastric cancer cell line. RESULTS: The PRGS is an independent risk factor for overall survival that performs reliably and has a robust utility. Notably, PRGS proteins promote cancer cell proliferation by regulating the cell cycle. Besides, the high-risk group displayed a lower tumor purity, higher immune cell infiltration, and lower oncogenic mutation than the low-PRGS group. CONCLUSIONS: This PRGS could be a powerful and robust tool to improve clinical outcomes for individual gastric cancer patients.

5.
Nat Commun ; 13(1): 7330, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443314

RESUMO

The rapidly developing spatial omics generated datasets with diverse scales and modalities. However, most existing methods focus on modeling dynamics of single cells while ignore microenvironments (MEs). Here we present SOTIP (Spatial Omics mulTIPle-task analysis), a versatile method incorporating MEs and their interrelationships into a unified graph. Based on this graph, spatial heterogeneity quantification, spatial domain identification, differential microenvironment analysis, and other downstream tasks can be performed. We validate each module's accuracy, robustness, scalability and interpretability on various spatial omics datasets. In two independent mouse cerebral cortex spatial transcriptomics datasets, we reveal a gradient spatial heterogeneity pattern strongly correlated with the cortical depth. In human triple-negative breast cancer spatial proteomics datasets, we identify molecular polarizations and MEs associated with different patient survivals. Overall, by modeling biologically explainable MEs, SOTIP outperforms state-of-art methods and provides some perspectives for spatial omics data exploration and interpretation.


Assuntos
Córtex Cerebral , Voo Espacial , Animais , Camundongos , Humanos , Proteômica , Análise Espacial , Sobrevida
6.
Nucleic Acids Res ; 50(1): 46-56, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34850940

RESUMO

Clustering cells and depicting the lineage relationship among cell subpopulations are fundamental tasks in single-cell omics studies. However, existing analytical methods face challenges in stratifying cells, tracking cellular trajectories, and identifying critical points of cell transitions. To overcome these, we proposed a novel Markov hierarchical clustering algorithm (MarkovHC), a topological clustering method that leverages the metastability of exponentially perturbed Markov chains for systematically reconstructing the cellular landscape. Briefly, MarkovHC starts with local connectivity and density derived from the input and outputs a hierarchical structure for the data. We firstly benchmarked MarkovHC on five simulated datasets and ten public single-cell datasets with known labels. Then, we used MarkovHC to investigate the multi-level architectures and transition processes during human embryo preimplantation development and gastric cancer procession. MarkovHC found heterogeneous cell states and sub-cell types in lineage-specific progenitor cells and revealed the most possible transition paths and critical points in the cellular processes. These results demonstrated MarkovHC's effectiveness in facilitating the stratification of cells, identification of cell populations, and characterization of cellular trajectories and critical points.


Assuntos
Biologia Computacional/métodos , Análise de Célula Única/métodos , Blastocisto/citologia , Blastocisto/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem da Célula , Humanos , Cadeias de Markov
7.
Nat Commun ; 12(1): 3708, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140506

RESUMO

3D genome alternations can dysregulate gene expression by rewiring enhancer-promoter interactions and lead to diseases. We report integrated analyses of 3D genome alterations and differential gene expressions in 18 newly diagnosed T-lineage acute lymphoblastic leukemia (T-ALL) patients and 4 healthy controls. 3D genome organizations at the levels of compartment, topologically associated domains and loop could hierarchically classify different subtypes of T-ALL according to T cell differentiation trajectory, similar to gene expressions-based classification. Thirty-four previously unrecognized translocations and 44 translocation-mediated neo-loops are mapped by Hi-C analysis. We find that neo-loops formed in the non-coding region of the genome could potentially regulate ectopic expressions of TLX3, TAL2 and HOXA transcription factors via enhancer hijacking. Importantly, both translocation-mediated neo-loops and NUP98-related fusions are associated with HOXA13 ectopic expressions. Patients with HOXA11-A13 expressions, but not other genes in the HOXA cluster, have immature immunophenotype and poor outcomes. Here, we highlight the potentially important roles of 3D genome alterations in the etiology and prognosis of T-ALL.


Assuntos
Cromossomos/metabolismo , Proteínas de Homeodomínio/genética , Leucemia-Linfoma de Células T do Adulto/genética , Conformação Molecular , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Linfócitos T/metabolismo , Translocação Genética , Acetilação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula , Criança , Sequenciamento de Cromatina por Imunoprecipitação , Cromossomos/genética , Progressão da Doença , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica/genética , Regulação Leucêmica da Expressão Gênica/imunologia , Ontologia Genética , Hematopoese/genética , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Imunofenotipagem , Leucemia-Linfoma de Células T do Adulto/metabolismo , Leucemia-Linfoma de Células T do Adulto/mortalidade , Leucemia-Linfoma de Células T do Adulto/patologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/mortalidade , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Prognóstico , Linfócitos T/patologia , Adulto Jovem
8.
PeerJ ; 6: e5043, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29938138

RESUMO

BACKGROUND: Entolimod is a Salmonella enterica flagellin derivate. Previous work has demonstrated that entolimod effectively protects mice and non-human primates from ionizing radiation. However, it caused a "flu-like" syndrome after radioprotective and anticancer clinical application, indicating some type of immunogenicity and toxicity. Cyclization is commonly used to improve the in vivo stability and activity of peptides and proteins. METHODS: We designed and constructed cyclic entolimod using split Nostoc punctiforme DnaE intein with almost 100% cyclization efficiency. We adopted different strategies to purify the linear and circular entolimod due to their different topologies. Both of linear and circular entolimod were first purified by Ni-chelating affinity chromatography, and then the linear and circular entolimod were purified by size-exclusion and ion-exchange chromatography, respectively. RESULTS: The circular entolimod showed significantly increased both the in vitro NF-κB signaling and in vivo radioprotective activity in mice. CONCLUSION: Our data indicates that circular entolimod might be a good candidate for further clinical investigation.

9.
Biochim Biophys Acta Gene Regul Mech ; 1860(8): 885-893, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28511927

RESUMO

Interferon-induced transmembrane protein (IFITM) 1, 2 and 3 genes encode a family of interferon (IFN)-induced transmembrane proteins that block entry of a broad spectrum of pathogens. However, the transcriptional regulation of these genes, especially whether there exist any enhancers and their roles during the IFN induction process remain elusive. Here, through public data mining, episomal luciferase reporter assay and in vivo CRISPR-Cas9 genome editing, we identified an IFN-responsive enhancer located 35kb upstream of IFITM3 gene promoter upregulating the IFN-induced expression of IFITM1, 2 and 3 genes. Chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assay (EMSA) and luciferase reporter assay demonstrated that signal transducers and activators of transcription (STAT) 1 bound to the enhancer with the treatment of IFN and was indispensable for the enhancer activity. Furthermore, using chromosome conformation capture technique, we revealed that the IFITM1, 2 and 3 genes physically clustered together and constitutively looped to the distal enhancer through long-range interactions in both HEK293 and A549 cells, providing structural basis for coordinated regulation of IFITM1, 2 and 3 by the enhancer. Finally, we showed that in vivo truncation of the enhancer impaired IFN-induced resistance to influenza A virus (IAV) infection. These findings expand our understanding of the mechanisms underlying the transcriptional regulation of IFITM1, 2 and 3 expression and its ability to mediate IFN signaling.


Assuntos
Antígenos de Diferenciação/genética , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Interferons/genética , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/genética , Células A549 , Linhagem Celular , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodos , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Vírus da Influenza A/patogenicidade , Influenza Humana/genética , Regiões Promotoras Genéticas/genética , Fator de Transcrição STAT1/genética , Transdução de Sinais/genética , Ativação Transcricional/genética , Regulação para Cima/genética
10.
Yi Chuan ; 38(7): 651-657, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27733338

RESUMO

The CCCTC-binding factor (CTCF) is the main insulator protein described in vertebrates. It plays fundamental roles during diverse cellular processes. CTCF gene knockout mice led to death during embryonic development. To further explore the functions of CTCF, we employed a CRISPR/Cas9-based genome engineering strategy to in-frame insert the mitosis-special degradation domain (MD) of cyclin B into the upstream open reading frame of CTCF gene. Fusion protein is designed to degrade during mitosis leaded by MD. As a control group, mutation of a single arginine (R42A) within the destruction box inactivates the MD leading to constitutive expression of MD*-CTCF. The homozygous clones were obtained via the screening by puromycin when coexpressed with puromycin resistence gene. The protein level of CTCF in MD-CTCF cell line was about 10% of wild-type cells throughout cell cycles by the analyses of Western blotting and immunofluorescence. There was no significant difference between MD*-CTCF cell line and wild type. Flow cytometry results showed prolonged G1 phase in MD-CTCF cell line. Taken together, we demonstrated the feasibility of efficiently inserting MD domain into genome with the CRISPR/Cas9 technology and reported the first CTCF-specific degradation human cell line.


Assuntos
Sistemas CRISPR-Cas/fisiologia , Edição de Genes , Proteínas Repressoras/metabolismo , Fator de Ligação a CCCTC , Divisão Celular , Linhagem Celular Tumoral , Fase G1 , Humanos , Proteínas Repressoras/análise , Proteínas Repressoras/química
11.
Mol Med Rep ; 11(5): 3432-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25607471

RESUMO

Vascular endothelial growth factor (VEGF) plays an important role in both physiological and pathological angiogenesis. VEGF receptor­1 (VEGFR­1) acts as a decoy VEGF receptor that enables the regulation of VEGF on the vascular endothelium. In the present study, the recombinant human VEGFR1D1­3/Fc (rhVEGFR­1), which contains key domains for VEGF binding, was cloned and expressed in Chinese hamster ovary (CHO) cells. The rhVEGFR­1 protein was purified using protein­A affinity chromatography. The molecular weight of rhVEGFR­1 was found to be ~162 and 81 kD in non­reducing and reducing SDS­PAGE, respectively. The majority of the final protein products were in the dimeric conformation. Western blot analysis revealed that rhVEGFR­1 was only capable of binding to the full glycan form of rhVEGF­165 and rhVEGF­121. The dissociation constant for the binding of rhVEGFR­1 to VEGF­165, detected using Biacore, was 285 pM. In addition, rhVEGFR­1 inhibited the proliferation and migration of human microvascular endothelial cells. In vivo experiments also demonstrated that rhVEGFR­1 inhibited chicken chorioallantoic membrane neovascularization and angiogenesis in nude mice. In conclusion, an anti­angiogenic recombinant soluble VEGFR was expressed (up to 5 mg/l) in CHO cells and was shown to be capable of inhibiting neovascularization in vivo and in vitro.


Assuntos
Inibidores da Angiogênese/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Recombinantes de Fusão , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/farmacologia , Animais , Células CHO , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Clonagem Molecular , Cricetulus , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Camundongos , Camundongos Nus , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
12.
Biochim Biophys Acta ; 1853(2): 481-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25499265

RESUMO

Accumulating evidence indicates that some miRNAs could form feedback loops with their targets to fine-tune tissue homeostasis, while disruption of these loops constitutes an essential step towards human tumorigenesis. In this study, we report the identification of a novel negative feedback loop formed between miR-139 and its oncogenic target Jun. In this loop, miR-139 could inhibit Jun expression by targeting a conserved site on its 3'-UTR, whereas Jun could induce miR-139 expression in a dose dependent manner through a distant upstream regulatory element. Interestingly, aberration in this loop was found in human gastric cancer, where miR-139 was down-regulated and inversely correlated with Jun expression. Further functional analysis showed that restored expression of miR-139 in gastric cancer cells significantly induces apoptosis, and inhibits cell migration and proliferation as well as tumour growth through targeting Jun. Thus, our data strongly suggests a role of aberrant miR-139/Jun negative feedback loop in the development of human gastric cancer and miR-139 as a potential therapeutic target for gastric cancer. Given that miR-139 and Jun are deregulated in many cancers, our findings here might have broader implication in other types of human cancers.


Assuntos
Retroalimentação Fisiológica , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Neoplasias Gástricas/genética , Sequência de Bases , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Dados de Sequência Molecular , Neoplasias Gástricas/patologia , Transcrição Gênica
13.
Biol. Res ; 48: 1-8, 2015. graf
Artigo em Inglês | LILACS | ID: biblio-950791

RESUMO

BACKGROUND: The CCCTC-binding factor (CTCF) is a highly conserved insulator protein that plays various roles in many cellular processes. CTCF is one of the main architecture proteins in higher eukaryotes, and in combination with other architecture proteins and regulators, also shapes the three-dimensional organization of a genome. Experiments show CTCF partially remains associated with chromatin during mitosis. However, the role of CTCF in the maintenance and propagation of genome architectures throughout the cell cycle remains elusive. RESULTS: We performed a comprehensive bioinformatics analysis on public datasets of Drosophila CTCF (dCTCF). We characterized dCTCF-binding sites according to their occupancy status during the cell cycle, and identified three classes: interphase-mitosis-common (IM), interphase-only (IO) and mitosis-only (MO) sites. Integrated function analysis showed dCTCF-binding sites of different classes might be involved in different biological processes, and IM sites were more conserved and more intensely bound. dCTCF-binding sites of the same class preferentially localized closer to each other, and were highly enriched at chromatin syntenic and topologically associating domains boundaries. CONCLUSIONS: Our results revealed different functions of dCTCF during the cell cycle and suggested that dCTCF might contribute to the establishment of the three-dimensional architecture of the Drosophila genome by maintaining local chromatin compartments throughout the whole cell cycle.


Assuntos
Animais , Proteínas Repressoras/fisiologia , Cromatina/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/química , Genoma de Inseto/genética , Mitose/fisiologia , Sítios de Ligação , Sequência de Bases , Ciclo Celular/fisiologia , Sequência Conservada , Biologia Computacional , Sintenia , Montagem e Desmontagem da Cromatina/fisiologia , Anotação de Sequência Molecular , Conjuntos de Dados como Assunto , Fator de Ligação a CCCTC , Interfase/fisiologia
14.
PLoS One ; 7(2): e31416, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22347474

RESUMO

Chromatin loops play important roles in the dynamic spatial organization of genes in the nucleus. Growing evidence has revealed that the multivalent functional zinc finger protein CCCTC-binding factor (CTCF) is a master regulator of genome spatial organization, and mediates the ubiquitous chromatin loops within the genome. Using circular chromosome conformation capture (4C) methodology, we discovered that CTCF may be a master organizer in mediating the spatial organization of the kcnq5 gene locus. We characterized the cell-type specific spatial organization of the kcnq5 gene locus mediated by CTCF in detail using chromosome conformation capture (3C) and 3C-derived techniques. Cohesion also participated in mediating the organization of this locus. RNAi-mediated knockdown of CTCF sharply diminished the interaction frequencies between the chromatin loops of the kcnq5 gene locus and down-regulated local gene expression. Functional analysis showed that the interacting chromatin loops of the kcnq5 gene locus can repress the gene expression in a luciferase reporter assay. These interacting chromatin fragments were a series of repressing elements whose contacts were mediated by CTCF. Therefore, these findings suggested that the dynamical spatial organization of the kcnq5 locus regulates local gene expression.


Assuntos
Regulação da Expressão Gênica , Canais de Potássio KCNQ/metabolismo , Proteínas Repressoras/fisiologia , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Cromatina , Cromossomos , Loci Gênicos , Genoma Humano , Humanos
15.
Mol Cell Biochem ; 360(1-2): 243-51, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21948239

RESUMO

CCCTC-binding factor (CTCF) is a master organizer of genome spatial organization and plays an important role in mediating extensive chromatin interactions. Circular chromosome conformation capture (4C) is a high-throughput approach that allows genome-wide screening for unknown potential interaction partners. Using a conserved CTCF binding site on the Bcl11b locus as bait, an interaction partner at the Arhgap6 locus on a different chromosome was identified by 4C. Additional experiments verified that the interchromatin interaction between the Bcl11b and Arhgap6 loci was cell-type specific, which was cooperatively mediated by CTCF and cohesin. Functional analysis showed that the interchromatin interaction partners were repressing regulatory elements. These results indicate that interaction chromatin loops regulate the expression of the relevant genes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Epistasia Genética , Proteínas Ativadoras de GTPase/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/genética , Sequência de Bases , Fator de Ligação a CCCTC , Linhagem Celular , Cromatina/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Loci Gênicos , Histonas/metabolismo , Humanos , Luciferases de Vaga-Lume/biossíntese , Luciferases de Vaga-Lume/genética , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Dados de Sequência Molecular , Elementos Silenciadores Transcricionais , Proteínas Supressoras de Tumor/metabolismo , Coesinas
16.
Yi Chuan ; 31(7): 683-8, 2009 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-19586872

RESUMO

RNA interference (RNAi) is a mechanism of posttranscriptional gene silencing mediated by small interfering RNA (siRNA). The ability of synthetic siRNA to silence genes in vivo has made it well suited as therapeutic drug, but the instability and polarity of siRNA and the complexity of in vivo circumstances retarded rapid development of RNAi-based therapies. In this review, a summary of the advances on in vivo siRNA delivery is presented and discussed.


Assuntos
RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/metabolismo , Animais , Anticorpos/metabolismo , Vetores Genéticos/metabolismo , Humanos , Nanopartículas , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA