Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(8): 2661-2670, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38345313

RESUMO

Nanomaterial-assisted chemodynamic therapy (CDT) has received considerable attention in recent years. It outperforms other modalities by its distinctive reactive oxygen species (ROS) generation through a nonexogenous stimulant. However, CDT is limited by the insufficient content of endogenous hydrogen peroxide (H2O2). Herein, a biodegradable MnS@HA-DOX nanocluster (MnS@HA-DOX NC) was constructed by in situ biomineralization from hyaluronic acid, to enlarge the ROS cascade and boost Mn2+-based CDT. The acid-responsive NCs could quickly degrade after internalization into endo/lysosomes, releasing Mn2+, H2S gas, and anticancer drug doxorubicin (DOX). The Fenton-like reaction catalyzed by Mn2+ was amplified by both H2S and DOX, producing a mass of cytotoxic ·OH radicals. Through the combined action of gas therapy (GT), CDT, and chemotherapy, oxidative stress would be synergistically enhanced, inducing irreversible DNA damage and cell cycle arrest, eventually resulting in cancer cell apoptosis.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Humanos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/farmacologia , Doxorrubicina/farmacologia , Apoptose , Biomineralização , Gases , Linhagem Celular Tumoral , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA