Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38717638

RESUMO

BACKGROUND: Cardiac hypertrophy is the common pathological process of multiple cardiovascular diseases. However, the molecular mechanisms of cardiac hypertrophy are unclear. Long non-coding RNA (lncRNA), a newly discovered type of transcript that has been demonstrated to function as crucial regulators in the development of cardiovascular diseases. This study revealed a novel regulatory pathway of lncRNA in cardiac hypertrophy. METHODS: The cardiac hypertrophy models were established by transverse aortic constriction (TAC) in mice and angiotensin II (Ang II) in HL-1 cardiomyocytes. Adeno-associated virus 9 (AAV9) in vivo and lncRNA Gm15834 and shRNA plasmids in vitro were used to overexpress and knock down lncRNA Gm15834. The myocardial tissue structure, cardiomyocyte area, cardiac function, protein expressions, and binding of lncRNA Gm15834 and Src-associated substrate during mitosis of 68 KDa (Sam68) were detected by hematoxylin and eosin (HE) staining, immunofluorescence staining, echocardiography, western blot and RNA immunoprecipitation (RIP), respectively. RESULTS: In cardiac hypertrophy models, inhibiting lncRNA Gm15834 could decrease Sam68 expression and nuclear factor kappa-B (NF-κB) mediated inflammatory activities in vivo and in vitro, but overexpressing lncRNA Gm15834 showed the opposite results. RIP experiments validated the binding activities between lncRNA Gm15834 and Sam68. Overexpression of Sam68 could counteract the anti-hypertrophy effects of lncRNA Gm15834 knockdown. Meanwhile, in vivo inhibition of lncRNA Gm15834 could inhibit Sam68 expression, reduce NF-κB mediated inflammatory activity and attenuate cardiac hypertrophy. CONCLUSION: Our study revealed a novel regulatory axis of cardiac hypertrophy, which comprised lncRNA Gm15834/Sam68/NF-κB/inflammation, shedding a new light for identifying therapy target of cardiac hypertrophy in clinic.

2.
Eur J Pharmacol ; 949: 175712, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37054936

RESUMO

Hepatic ischemia-reperfusion (I/R) injury is a multifactorial process caused by transient tissue hypoxia and the following reoxygenation, commonly occurring in liver transplantation and hepatectomy. Hepatic I/R can induce a systemic inflammatory response, liver dysfunction, or even multiple organ failure. Although we have previously reported that taurine could attenuate acute liver injury after hepatic I/R, only a tiny proportion of the systemically injected taurine could reach the targeted organ and tissues. In this present study, we prepared taurine nanoparticles (Nano-taurine) by coating taurine with neutrophil membranes and investigated the protective effects of Nano-taurine against I/R-induced injury and the underlying mechanisms. Our results showed that Nano-taurine restored liver function by declining AST and ALT levels and reducing histology damage. Nano-taurine decreased inflammatory cytokines, including interleukin (IL)-6, tumor necrosis factor (TNF)-α, intercellular adhesion molecule (ICAM)-1, NLR pyrin domain containing 3 (NLRP3) and apoptosis-associated speck-like protein containing CARD (ASC) and oxidants including superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), catalase (CAT) and reactive oxygen species (ROS), exhibiting anti-inflammatory and antioxidant properties. The expression of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) was increased, while prostaglandin-endoperoxide synthase 2 (Ptgs2) was decreased upon administration of Nano-taurine, suggesting that inhibiting ferroptosis may be involved in the mechanism during hepatic I/R injury. These results suggest that Nano-taurine have a targeted therapeutic effect on hepatic I/R injury by inhibiting inflammation, oxidative stress, and ferroptosis.


Assuntos
Hepatopatias , Traumatismo por Reperfusão , Humanos , Taurina/farmacologia , Taurina/uso terapêutico , Neutrófilos/metabolismo , Fígado , Hepatopatias/patologia , Estresse Oxidativo , Fator de Necrose Tumoral alfa/metabolismo , Glutationa/metabolismo , Interleucina-6/metabolismo , Traumatismo por Reperfusão/metabolismo
3.
Mol Ther ; 29(3): 1120-1137, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33130312

RESUMO

Emerging evidence reveals that autophagy plays crucial roles in cardiac hypertrophy. Long noncoding RNAs (lncRNAs) are novel transcripts that function as gene regulators. However, it is unclear whether lncRNAs regulate autophagy in cardiac hypertrophy. Here, we identified a novel transcript named lncRNA Gm15834, which was upregulated in the transverse aortic constriction (TAC) model in vivo and the angiotensin-II (Ang-II)-induced cardiac hypertrophy model in vitro and was regulated by nuclear factor kappa B (NF-κB). Importantly, forced expression of lncRNA Gm15834 enhanced autophagic activity of cardiomyocytes and promoted myocardial hypertrophy, whereas silencing of lncRNA Gm15834 attenuated autophagy-induced myocardial hypertrophy. Mechanistically, we found that lncRNA Gm15834 could function as an endogenous sponge RNA of microRNA (miR)-30b-3p, which was downregulated in cardiac hypertrophy. Inhibition of miR-30b-3p enhanced cardiomyocyte autophagic activity and aggravated myocardial hypertrophy, whereas overexpression of miR-30b-3p suppressed autophagy-induced myocardial hypertrophy by targeting the downstream autophagy factor of unc-51-like kinase 1 (ULK1). Moreover, inhibition of lncRNA Gm15834 by adeno-associated virus carrying short hairpin RNA (shRNA) suppressed cardiomyocyte autophagic activity, improved cardiac function, and mitigated cardiac hypertrophy. Taken together, our study identified a novel regulatory axis encompassing lncRNA Gm15834/miR-30b-3p/ULK1/autophagy in cardiac hypertrophy, which may provide a potential therapy target for cardiac hypertrophy.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia , Cardiomegalia/terapia , Regulação da Expressão Gênica , RNA Longo não Codificante/antagonistas & inibidores , Angiotensina II/toxicidade , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais , Vasoconstritores/toxicidade
4.
Phytomedicine ; 58: 152765, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31005720

RESUMO

BACKGROUND: Cardiac hypertrophy is an adaptive response of the myocardium to pressure or volume overload. Recent evidences indicate that allicin can prevent cardiac hypertrophy. However, it is not clear whether allicin alleviates cardiac hypertrophy by inhibiting autophagy. PURPOSE: We aimed to investigate the effects of allicin on pressure overload-induced cardiac hypertrophy, and further to clarify the related mechanism. STUDY DESIGN/METHODS: Cardiac hypertrophy was successfully established by abdominal aortic constriction (AAC) in rats, and cardiomyocytes hypertrophy was simulated by angiotensin II (Ang II) in vitro. Hemodynamic parameters were monitored by organism function experiment system in vivo. The changes of cell surface area were observed using HE and immunofluorescence staining in vivoand in vitro, respectively. The expressions of cardiac hypertrophy relative protein (BNP and ß-MHC), autophagy marker protein (LC3-II and Beclin-1), Akt, PI3K and ERK were detected by western blot. RESULTS: Allicin could improve cardiac function, and reduce cardiomyocytes size, and decrease BNP and ß-MHC protein expressions. Further results showed that allicin could lower LC3-II and Beclin-1 protein expressions both in vivo and in vitro experiments. And pharmacological inhibitor of mTOR, rapamycin could antagonize the effects of allicin on Ang II-induced cardiac hypertrophy and autophagy. Simultaneously, allicin could promote the expressions of p-Akt, p-PI3K and p-ERK protein. CONCLUSION: These findings reveal a novel mechanism of allicin attenuating cardiac hypertrophy which allicin could inhibit excessive autophagy via activating PI3K/Akt/mTOR and MAPK/ERK/mTOR signaling pathways.


Assuntos
Autofagia/efeitos dos fármacos , Cardiomegalia/tratamento farmacológico , Cardiotônicos/farmacologia , Ácidos Sulfínicos/farmacologia , Angiotensina II/farmacologia , Animais , Cardiomegalia/metabolismo , Dissulfetos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
5.
Phytomedicine ; 51: 241-254, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30466623

RESUMO

OBJECTIVE: Cardiac microvascular damage is significantly associated with the development of cardiac hypertrophy (CH). Researchers found that allicin could inhibit CH, but the relationship between cardiac microvessel and the inhibition of allicin on CH has not been reported. We aimed to investigate the effect of allicin on the function of cardiac microvascular endothelial cells (CMECs) in CH rat. MATERIALS AND METHODS: The hemodynamic parameters were measured by BL-420F biological function experimental system and the indicators of the ventricular structure and function were measured by echocardiographic system. MTT assay was performed to assess the cell viability. Nitrite detection was performed to detect nitric oxide content. The morphology and molecular characteristics were detected by electron micrographs, immunofluorescence, quantitative real-time polymerase chain reaction (qRT-PCR), western blot. Wound healing experiment, analysis of tube formation and shear adaptation were performed to assess CMECs migration ability, angiogenesis and shear-responsiveness respectively. RESULT: Our findings have identified that microvascular density was decreased by observing the expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) in CH rats. Interestingly, allicin improved the distribution and expression of PECAM-1. Meanwhile, allicin enhanced the migration and angiogenesis ability of CMECs, activated PECAM-1-PI3K-AKT-eNOS signaling pathway, however, the role of allicin was disappear after PECAM-1 was silenced. Allicin decreased the expression of caspase-3 and receptor interacting protein 3 (RIP3), inhibited necroptosis, and increased the levels of Angiopoietin-2 (Ang-2) and platelet-derived growth factor receptor-ß (PDGFR-ß). Under 10 dyn/cm2 condition, allicin advanced the modification ability of CMECs's shear-adaptation by activating PECAM-1. CONCLUSION: Allicin provided cardioprotection for CH rats by improving the function of CMECs through increasing the expression of PECAM-1.


Assuntos
Cardiomegalia/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ácidos Sulfínicos/farmacologia , Animais , Apoptose , Células Cultivadas , Dissulfetos , Células Endoteliais/citologia , Endotélio Vascular/metabolismo , Inativação Gênica , Masculino , Miocárdio/patologia , Neovascularização Patológica/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais
6.
Eur J Pharmacol ; 835: 1-10, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30075219

RESUMO

Hepatic ischemia reperfusion (I/R) injury is very common in liver transplantation and major liver surgeries and may cause liver failure or even death. Docosahexaenoic acid (DHA) has displayed activities in reducing oxidative stress and inflammatory reaction in many disorders. In the present study, we investigated the protective effects of DHA against I/R-induced injury and the underlying mechanisms. Here, we show that DHA protected hepatic I/R injury by reducing aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and decreasing the oxidative stress in liver tissues. The viability of Buffalo rat liver (BRL) cells was reduced by hypoxia/restoration (H/R) but restored by DHA. DHA significantly downregulated the expression of pyroptosis-related proteins including NLR pyrin domain containing 3 (NLRP3), apoptotic speck-like protein containing CARD (ASC) and cleaved caspase-1 and reduced the secretion of pro-inflammatory cytokines. The above results were supported by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. However, incubation with LY294002, a specific inhibitor of phosphatidylinositol-3-kinase (PI3K), abolished the effects of DHA, since it increased the expression of cleaved caspase-1 and the production of inflammatory cytokines. The present results have demonstrated that DHA ameliorated I/R-induced injury by inhibiting pyroptosis of hepatocytes induced in liver I/R injury in vivo and in vitro through the PI3K/Akt pathway, providing a potential therapeutic option to prevent liver injury by I/R.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Fígado/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piroptose/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/uso terapêutico , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Cell Prolif ; 51(3): e12436, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29359496

RESUMO

OBJECTVES: Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP channels family of Ca2+ -permeant cation channels. In this study, we aim to investigate the role of TRPV3 in pulmonary vascular remodeling and PASMCs proliferation under hypoxia. MATERIALS AND METHODS: The expression of TRPV3 was evaluated in patients with pulmonary arterial hypertension (PAH) and hypoxic rats, using hematoxylin and eosin (H&E) and immunohistochemistry. In vitro, MTT assay, flow cytometry, Western blotting and immunofluorescence were performed to investigate the effects of TRPV3 on proliferation of PASMCs. RESULTS: We found that, in vivo, the expression of TRPV3 was increased in patients with PAH and hypoxic rats. Right ventricular hypertrophy measurements and pulmonary pathomorphology data show that the ratio of the heart weight/tibia length (HW/TL), the right ventricle/left ventricle plus septum (RV/LV+S) and the medial width of the pulmonary artery were increased in chronic hypoxic rats. Moreover, the expression of proliferating cell nuclear antigen (PCNA), Cyclin D, Cyclin E and Cyclin A, phospho-CaMKII (p-CaMKII) were induced by hypoxia. In vitro, we revealed that hypoxia promoted PASMCs viability, increased the expression of PCNA, Cyclin D, Cyclin E, Cyclin A p-CaMKII, made more cells from G0 /G1 phase to G2 /M + S phase, enhanced the microtubule formation, and increased [Ca2+ ]i , which could be suppressed by Ruthenium Red, an inhibitor of TRPV3, and TRPV3 silencing has similar effects. Furthermore, the up-regulated expression of PCNA, Cyclin D, Cyclin E and Cyclin A, the increased number of cells in G2 /M and S phase, and the enhanced activation and expression of PI3K and AKT proteins induced by hypoxia and in presence of carvacrol (an agonist of TRPV3), was significantly attenuated by incubation of LY 294002, a specific inhibitor for PI3K/AKT. CONCLUSIONS: These findings suggest that TRPV3 is involved in hypoxia-induced pulmonary vascular remodeling and promotes proliferation of PASMCs and the effect is, at least in part, mediated via the PI3K/AKT pathway.


Assuntos
Proliferação de Células , Miócitos de Músculo Liso/fisiologia , Transdução de Sinais , Canais de Cátion TRPV/fisiologia , Animais , Hipóxia Celular , Células Cultivadas , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/patologia , Interferência de RNA , Ratos Wistar , Remodelação Vascular
8.
Eur J Pharmacol ; 796: 90-100, 2017 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-27916558

RESUMO

Carvacrol (CAR) is a compound isolated from some essential oils, many studies have demonstrated its therapeutic potential on different diseases. This study aims to evaluate the protective effect of CAR against myocardial ischemia/reperfusion (I/R) injury in rats. Male adult rats underwent ligation of the left anterior descending coronary artery (LAD) in I/R models. Rats were treated with CAR after LAD. The levels of I/R- induced infarct size, cardiomyocyte apoptosis and cardiac functional impairment were examined. Levels of superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) were detected by western blotting. Cardiomyocytes induced by hypoxic reperfusion (H/R) injury were tested by Hoechst 33258. Our results revealed that CAR administration significantly protected the heart function, attenuated myocardial infarct size, increased SOD and CAT levels, reduced MDA level and especially decreased cardiomyocytes apoptosis. Western blotting showed that CAR treatment up-regulated phosphorylated ERK (p-ERK), while producing no impact onp38 mitogen-activated protein kinase (p38MAPK) and c-Jun N-terminal kinase (JNK). The cardioprotection of CAR was reversed by the ERK inhibitor PD-98059, demonstrating the involvement of the MAPK/ERK pathway in the anti-apoptotic mechanisms of CAR. Besides, the results in vitro also showed the protective efficiency of CAR on cardiomyocytes H/R injury. Furthermore, pretreatment with CAR markedly increased the activation of Akt/eNOS pathway in cardiomyocytes subjected to H/R, and the protective effects of CAR were abolished in the presence of the Akt inhibitor LY294002. Therefore, the cardioprotective effects of CAR may be attributed to its antioxidant and antiapoptotic activities through activations of the MAPK/ERK and Akt/eNOS signaling pathways.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Monoterpenos/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Cardiotônicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cimenos , Relação Dose-Resposta a Droga , Eletrocardiografia , Ativação Enzimática/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA