RESUMO
Anthocyanin is one important nutrition composition in Tartary buckwheat (Fagopyrum tataricum) sprouts, a component missing in its seeds. Although anthocyanin biosynthesis requires light, the mechanism of light-induced anthocyanin accumulation in Tartary buckwheat is unclear. Here, comparative transcriptome analysis of Tartary buckwheat sprouts under light and dark treatments and biochemical approaches were performed to identify the roles of one B-box protein BBX22 and ELONGATED HYPOCOTYL 5 (HY5). The overexpression assay showed that FtHY5 and FtBBX22 could both promote anthocyanin synthesis in red-flower tobacco. Additionally, FtBBX22 associated with FtHY5 to form a complex that activates the transcription of MYB transcription factor genes FtMYB42 and FtDFR, leading to anthocyanin accumulation. These findings revealed the regulation mechanism of light-induced anthocyanin synthesis and provide excellent gene resources for breeding high-quality Tartary buckwheat.
Assuntos
Antocianinas , Fagopyrum , Regulação da Expressão Gênica de Plantas , Luz , Proteínas de Plantas , Fatores de Transcrição , Fagopyrum/genética , Fagopyrum/metabolismo , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/efeitos da radiação , Antocianinas/biossíntese , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Perfilação da Expressão Gênica , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/crescimento & desenvolvimentoRESUMO
Tartary buckwheat (Fagopyrum tataricum) is an important plant, utilized for both medicine and food. It has become a current research hotspot due to its rich content of flavonoids, which are beneficial for human health. Anthocyanins (ATs) and proanthocyanidins (PAs) are the two main kinds of flavonoid compounds in Tartary buckwheat, which participate in the pigmentation of some tissue as well as rendering resistance to many biotic and abiotic stresses. Additionally, Tartary buckwheat anthocyanins and PAs have many health benefits for humans and the plant itself. However, little is known about the regulation mechanism of the biosynthesis of anthocyanin and PA in Tartary buckwheat. In the present study, a bHLH transcription factor (TF) FtTT8 was characterized to be homologous with AtTT8 and phylogenetically close to bHLH proteins from other plant species. Subcellular location and yeast two-hybrid assays suggested that FtTT8 locates in the nucleus and plays a role as a transcription factor. Complementation analysis in Arabidopsis tt8 mutant showed that FtTT8 could not recover anthocyanin deficiency but could promote PAs accumulation. Overexpression of FtTT8 in red-flowering tobacco showed that FtTT8 inhibits anthocyanin biosynthesis and accelerates proanthocyanidin biosynthesis. QRT-PCR and yeast one-hybrid assay revealed that FtTT8 might bind to the promoter of NtUFGT and suppress its expression, while binding to the promoter of NtLAR and upregulating its expression in K326 tobacco. This displayed the bidirectional regulating function of FtTT8 that negatively regulates anthocyanin biosynthesis and positively regulates proanthocyanidin biosynthesis. The results provide new insights on TT8 in Tartary buckwheat, which is inconsistent with TT8 from other plant species, and FtTT8 might be a high-quality gene resource for Tartary buckwheat breeding.
Assuntos
Arabidopsis , Fagopyrum , Proantocianidinas , Humanos , Antocianinas/metabolismo , Proantocianidinas/metabolismo , Fagopyrum/genética , Fagopyrum/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Melhoramento Vegetal , Flavonoides/metabolismo , Plantas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Arabidopsis/genéticaRESUMO
Polyphenols (flavonoids and anthraquinones) are one of the most important phytochemicals in Fagopyrum tataricum L. Gaertn. (tartary buckwheat). However, the relationship between the polyphenols of tartary buckwheat seeds and their morphological variations is unclear. We developed a liquid chromatography-mass spectrometry-based targeted metabolomics method to study the chemical profiles of 60 flavonoids and 11 anthraquinones in 40 seed cultivars (groats and hulls). Both flavonoids and anthraquinones were related to variations in seed color; the fold change from yellowish-brown to black seeds was 1.24-1.55 in groats and 0.26-0.76 in hulls. Only flavonoids contributed to significant differences in seed shape; the fold change from long to short seeds was 1.29-1.78 in groats and 1.39-1.44 in hulls. Some differential metabolites were identified at higher concentrations in hulls than in groats. This study provides new insights into differences in polyphenols among tartary buckwheat seeds with different color and shape.