Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 14(675): eabi4354, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36516265

RESUMO

Immune-mediated bile duct epithelial injury and toxicity of retained hydrophobic bile acids drive disease progression in fibrosing cholangiopathies such as biliary atresia or primary sclerosing cholangitis. Emerging therapies include pharmacological agonists to farnesoid X receptor (FXR), the master regulator of hepatic synthesis, excretion, and intestinal reuptake of bile acids. Unraveling the mechanisms of action of pharmacological FXR agonists in the treatment of sclerosing cholangitis (SC), we found that intestinally restricted FXR activation effectively reduced bile acid pool size but did not improve the SC phenotype in MDR2-/- mice. In contrast, systemic FXR activation not only lowered bile acid synthesis but also suppressed proinflammatory cytokine production by liver-infiltrating inflammatory cells and blocked progression of hepatobiliary injury. The hepatoprotective activity was linked to suppressed production of IL1ß and TNFα by hepatic macrophages and inhibition of TH1/TH17 lymphocyte polarization. Deletion of FXR in myeloid cells caused aberrant TH1 and TH17 lymphocyte responses in diethoxycarbonyl-1,4-dihydrocollidine-induced SC and rendered these mice resistant to the anti-inflammatory and liver protective effects of systemic FXR agonist treatment. Pharmacological FXR activation reduced IL1ß and IFNγ production by liver- and blood-derived mononuclear cells from patients with fibrosing cholangiopathies. In conclusion, we demonstrate FXR to control the macrophage-TH1/17 axis, which is critically important for the progression of SC. Hepatic macrophages are cellular targets of systemic FXR agonist therapy for cholestatic liver disease.


Assuntos
Colangite Esclerosante , Camundongos , Animais , Colangite Esclerosante/tratamento farmacológico , Linfócitos T , Ácidos e Sais Biliares , Fígado , Macrófagos
2.
Gastroenterology ; 161(1): 287-300.e16, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33771553

RESUMO

BACKGROUND & AIMS: The etiology of cholestasis remains unknown in many children. We surveyed the genome of children with chronic cholestasis for variants in genes not previously associated with liver disease and validated their biological relevance in zebrafish and murine models. METHOD: Whole-exome (n = 4) and candidate gene sequencing (n = 89) was completed on 93 children with cholestasis and normal serum γ-glutamyl transferase (GGT) levels without pathogenic variants in genes known to cause low GGT cholestasis such as ABCB11 or ATP8B1. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 genome editing was used to induce frameshift pathogenic variants in the candidate gene in zebrafish and mice. RESULTS: In a 1-year-old female patient with normal GGT cholestasis and bile duct paucity, we identified a homozygous truncating pathogenic variant (c.198delA, p.Gly67Alafs∗6) in the ABCC12 gene (NM_033226). Five additional rare ABCC12 variants, including a pathogenic one, were detected in our cohort. ABCC12 encodes multidrug resistance-associated protein 9 (MRP9) that belongs to the adenosine 5'-triphosphate-binding cassette transporter C family with unknown function and no previous implication in liver disease. Immunohistochemistry and Western blotting revealed conserved MRP9 protein expression in the bile ducts in human, mouse, and zebrafish. Zebrafish abcc12-null mutants were prone to cholangiocyte apoptosis, which caused progressive bile duct loss during the juvenile stage. MRP9-deficient mice had fewer well-formed interlobular bile ducts and higher serum alkaline phosphatase levels compared with wild-type mice. They exhibited aggravated cholangiocyte apoptosis, hyperbilirubinemia, and liver fibrosis upon cholic acid challenge. CONCLUSIONS: Our work connects MRP9 with bile duct homeostasis and cholestatic liver disease for the first time. It identifies a potential therapeutic target to attenuate bile acid-induced cholangiocyte injury.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Ductos Biliares Intra-Hepáticos/patologia , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/patologia , Mutação , Proteínas de Peixe-Zebra/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose , Ductos Biliares Intra-Hepáticos/metabolismo , Estudos de Casos e Controles , Colestase Intra-Hepática/metabolismo , Doença Crônica , Feminino , Edição de Genes , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Lactente , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Sequenciamento do Exoma , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
3.
Transplantation ; 104(5): 1058-1069, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31415033

RESUMO

BACKGROUND: Renal allograft rejection is more frequent under belatacept-based, compared with tacrolimus-based, immunosuppression. We studied kidney transplant recipients experiencing rejection under belatacept-based early corticosteroid withdrawal following T-cell-depleting induction in a recent randomized trial (Belatacept-based Early Steroid Withdrawal Trial, clinicaltrials.gov NCT01729494) to determine mechanisms of rejection and treatment. METHODS: Peripheral mononuclear cells, serum creatinine levels, and renal biopsies were collected from 8 patients undergoing belatacept-refractory rejection (BRR). We used flow cytometry, histology, and immunofluorescence to characterize CD8 effector memory T cell (TEM) populations in the periphery and graft before and after mammalian target of rapamycin (mTOR) inhibition. RESULTS: Here, we found that patients with BRR did not respond to standard antirejection therapy and had a substantial increase in alloreactive CD8 T cells with a CD28/DR/CD38/CD45RO TEM. These cells had increased activation of the mTOR pathway, as assessed by phosphorylated ribosomal protein S6 expression. Notably, everolimus (an mTOR inhibitor) treatment of patients with BRR halted the in vivo proliferation of TEM cells and their ex vivo alloreactivity and resulted in their significant reduction in the peripheral blood. The frequency of circulating FoxP3 regulatory T cells was not altered. Importantly, everolimus led to rapid resolution of rejection as confirmed by histology. CONCLUSIONS: Thus, while prior work has shown that concomitant belatacept + mTOR inhibitor therapy is effective for maintenance immunosuppression, our preliminary data suggest that everolimus may provide an available means for effecting "rescue" therapy for rejections occurring under belatacept that are refractory to traditional antirejection therapy with corticosteroids and polyclonal antilymphocyte globulin.


Assuntos
Abatacepte/farmacologia , Linfócitos T CD8-Positivos/imunologia , Rejeição de Enxerto/tratamento farmacológico , Memória Imunológica/efeitos dos fármacos , Transplante de Rim , Linfócitos T Reguladores/imunologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Biópsia , Antígenos CD28/imunologia , Feminino , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/patologia , Sobrevivência de Enxerto , Humanos , Terapia de Imunossupressão/métodos , Imunossupressores/farmacologia , Rim/patologia , Masculino , Pessoa de Meia-Idade , Sirolimo/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Tacrolimo/farmacologia , Transplante Homólogo , Resultado do Tratamento
4.
Hepatology ; 68(5): 1905-1921, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29698570

RESUMO

In the multidrug resistance protein 2 (Mdr2)-/- mouse model, low phospholipid bile instigates biliary epithelial injury, sterile inflammation, and fibrosis, thereby recapitulating disease mechanisms implicated in biliary atresia (BA) and primary sclerosing cholangitis. We hypothesize that T lymphocytes contribute to the biliary injury and fibrosis in murine sclerosing cholangitis (SC) and that they are susceptible to suppression by regulatory T cells (Tregs). In juvenile Mdr2-/- mice, intrahepatic CD8+ lymphocytes were expanded, and contraction of intrahepatic Tregs coincided with rising serum alanine transferase and alkaline phosphatase (ALP) levels between days 14-30 of life. Antibody-mediated depletion of intrahepatic CD8+ lymphocytes during that time reduced ALP levels and the expression of osteopontin (Opn), a pro-fibrogenic cytokine. Depletion of intrahepatic Tregs with anti-CD25 antibody between days 7-30 increased intrahepatic CD8+ T cells, Opn expression, and fibrosis. Conversely, expansion of intrahepatic Tregs with interleukin 2/anti-interleukin 2 immune complexes (IL-2c) downregulated hepatic expression of Opn and Tnf, reduced frequency of intrahepatic CD8+ lymphocytes, and diminished biliary injury and fibrosis. Treatment with IL-2c upregulated hepatic Treg expression of CD39, an ectonucleotidase capable of hydrolyzing pro-inflammatory adenosine triphosphate. In vitro, Tregs expressing CD39 suppressed the proliferation of hepatic CD8+ lymphocytes from Mdr2-/- mice more efficiently than those lacking CD39. In infants with BA, infiltration of interlobular bile ducts with CD8+ cells was associated with biliary expression of Opn and its transcription was negatively correlated with mRNA expression of Treg-associated genes. Conclusion: Hepatic CD8+ T lymphocytes drive biliary injury and fibrosis in murine SC. Their proliferation is controlled by hepatic Tregs through the purinergic pathway, which is responsive to IL-2c, suggesting that Treg-directed low-dose Il-2 treatment may be considered as therapy for SC.


Assuntos
Ductos Biliares/patologia , Colangite Esclerosante/imunologia , Interleucina-2/imunologia , Fígado/imunologia , Linfócitos T Reguladores/imunologia , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Feminino , Fibrose/imunologia , Fibrose/patologia , Imunofluorescência , Humanos , Lactente , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Análise em Microsséries
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA