Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Sci ; 19(13): 4020-4035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705743

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer where no effective therapy has been developed. Here, we report that the natural product ER translocon inhibitor ipomoeassin F is a selective inhibitor of TNBC cell growth. A proteomic analysis of TNBC cells revealed that ipomoeassin F significantly reduced the levels of ER molecular chaperones, including PDIA6 and PDIA4, and induced ER stress, unfolded protein response (UPR) and autophagy in TNBC cells. Mechanistically, ipomoeassin F, as an inhibitor of Sec61α-containing ER translocon, blocks ER translocation of PDIA6, inducing its proteasomal degradation. Silencing of PDIA6 or PDIA4 by RNA interferences or treatment with a small molecule inhibitor of the protein disulfide isomerases in TNBC cells successfully recapitulated the ipomoeassin F phenotypes, including the induction of ER stress, UPR and autophagy, suggesting that the reduction of PDIAs is the key mediator of the pharmacological effects of ipomoeassin F. Moreover, ipomoeassin F significantly suppressed TNBC growth in a mouse tumor xenograft model, with a marked reduction in PDIA6 and PDIA4 levels in the tumor samples. Our study demonstrates that Sec61α-containing ER translocon and PDIAs are potential drug targets for TNBC and suggests that ipomoeassin F could serve as a lead for developing ER translocon-targeted therapy for TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteômica , Glicoconjugados , Modelos Animais de Doenças , Chaperonas Moleculares
2.
Molecules ; 27(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35889292

RESUMO

The plant-derived macrocyclic resin glycoside ipomoeassin F (Ipom-F) binds to Sec61α and significantly disrupts multiple aspects of Sec61-mediated protein biogenesis at the endoplasmic reticulum, ultimately leading to cell death. However, extensive assessment of Ipom-F as a molecular tool and a therapeutic lead is hampered by its limited production scale, largely caused by intramolecular assembly of the macrocyclic ring. Here, using in vitro and/or in cellula biological assays to explore the first series of ring-opened analogues for the ipomoeassins, and indeed all resin glycosides, we provide clear evidence that macrocyclic integrity is not required for the cytotoxic inhibition of Sec61-dependent protein translocation by Ipom-F. Furthermore, our modeling suggests that open-chain analogues of Ipom-F can interact with multiple sites on the Sec61α subunit, most likely located at a previously identified binding site for mycolactone and/or the so-called lateral gate. Subsequent in silico-aided design led to the discovery of the stereochemically simplified analogue 3 as a potent, alternative lead compound that could be synthesized much more efficiently than Ipom-F and will accelerate future ipomoeassin research in chemical biology and drug discovery. Our work may also inspire further exploration of ring-opened analogues of other resin glycosides.


Assuntos
Antineoplásicos , Glicoconjugados , Antineoplásicos/química , Glicoconjugados/química , Glicosídeos/farmacologia , Canais de Translocação SEC/metabolismo
3.
Sci Rep ; 11(1): 11562, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34079010

RESUMO

The Sec61 complex translocates nascent polypeptides into and across the membrane of the endoplasmic reticulum (ER), providing access to the secretory pathway. In this study, we show that Ipomoeassin-F (Ipom-F), a selective inhibitor of protein entry into the ER lumen, blocks the in vitro translocation of certain secretory proteins and ER lumenal folding factors whilst barely affecting others such as albumin. The effects of Ipom-F on protein secretion from HepG2 cells are twofold: reduced ER translocation combined, in some cases, with defective ER lumenal folding. This latter issue is most likely a consequence of Ipom-F preventing the cell from replenishing its ER lumenal chaperones. Ipom-F treatment results in two cellular stress responses: firstly, an upregulation of stress-inducible cytosolic chaperones, Hsp70 and Hsp90; secondly, an atypical unfolded protein response (UPR) linked to the Ipom-F-mediated perturbation of ER function. Hence, although levels of spliced XBP1 and CHOP mRNA and ATF4 protein increase with Ipom-F, the accompanying increase in the levels of ER lumenal BiP and GRP94 seen with tunicamycin are not observed. In short, although Ipom-F reduces the biosynthetic load of newly synthesised secretory proteins entering the ER lumen, its effects on the UPR preclude the cell restoring ER homeostasis.


Assuntos
Glicoconjugados/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Células Hep G2 , Humanos , Transporte Proteico , Canais de Translocação SEC/metabolismo
4.
J Org Chem ; 85(24): 16226-16235, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33264019

RESUMO

Two new ring-size-varying analogues (2 and 3) of ipomoeassin F were synthesized and evaluated. Improved cytotoxicity (IC50: from 1.8 nM) and in vitro protein translocation inhibition (IC50: 35 nM) derived from ring expansion imply that the binding pocket of Sec61α (isoform 1) can accommodate further structural modifications, likely in the fatty acid portion. Streamlined preparation of the key diol intermediate 5 enabled gram-scale production, allowing us to establish that ipomoeassin F is biologically active in vivo (MTD: ∼3 mg/kg).


Assuntos
Glicoconjugados , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Relação Estrutura-Atividade
5.
ACS Med Chem Lett ; 11(6): 1111-1117, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32550989

RESUMO

Itraconazole, a widely used antifungal drug, was found to possess antiangiogenic activity and is currently undergoing multiple clinical trials for the treatment of different types of cancer. However, it suffers from extremely low solubility and strong interactions with many drugs through inhibition of CYP3A4, limiting its potential as a new antiangiogenic and anticancer drug. To address these issues, a series of analogs in which the phenyl group is replaced with pyridine or fluorine-substituted benzene was synthesized. Among them the pyridine- and tetrazole-containing compound 24 has significantly improved solubility and reduced CYP3A4 inhibition compared to itraconazole. Similar to itraconazole, compound 24 inhibited the AMPK/mTOR signaling axis and the glycosylation of VEGFR2. It also induced cholesterol accumulation in the endolysosome and demonstrated binding to the sterol-sensing domain of NPC1 in a simulation study. These results suggested that compound 24 may serve as an attractive candidate for the development of a new generation of antiangiogenic drug.

6.
J Am Chem Soc ; 141(21): 8450-8461, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31059257

RESUMO

Ipomoeassin F is a potent natural cytotoxin that inhibits growth of many tumor cell lines with single-digit nanomolar potency. However, its biological and pharmacological properties have remained largely unexplored. Building upon our earlier achievements in total synthesis and medicinal chemistry, we used chemical proteomics to identify Sec61α (protein transport protein Sec61 subunit alpha isoform 1), the pore-forming subunit of the Sec61 protein translocon, as a direct binding partner of ipomoeassin F in living cells. The interaction is specific and strong enough to survive lysis conditions, enabling a biotin analogue of ipomoeassin F to pull down Sec61α from live cells, yet it is also reversible, as judged by several experiments including fluorescent streptavidin staining, delayed competition in affinity pulldown, and inhibition of TNF biogenesis after washout. Sec61α forms the central subunit of the ER protein translocation complex, and the binding of ipomoeassin F results in a substantial, yet selective, inhibition of protein translocation in vitro and a broad ranging inhibition of protein secretion in live cells. Lastly, the unique resistance profile demonstrated by specific amino acid single-point mutations in Sec61α provides compelling evidence that Sec61α is the primary molecular target of ipomoeassin F and strongly suggests that the binding of this natural product to Sec61α is distinctive. Therefore, ipomoeassin F represents the first plant-derived, carbohydrate-based member of a novel structural class that offers new opportunities to explore Sec61α function and to further investigate its potential as a therapeutic target for drug discovery.


Assuntos
Glicoconjugados/farmacologia , Canais de Translocação SEC/antagonistas & inibidores , Sítios de Ligação/efeitos dos fármacos , Glicoconjugados/química , Humanos , Estrutura Molecular , Transporte Proteico/efeitos dos fármacos , Canais de Translocação SEC/metabolismo
7.
J Med Chem ; 61(24): 11158-11168, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30481027

RESUMO

Itraconazole has been found to possess potent antiangiogenic activity, exhibiting promising antitumor activity in several human clinical studies. The wider use of itraconazole in the treatment of cancer, however, has been limited by its potent inhibition of the drug metabolizing enzyme cytochrome P450 3A4 (CYP3A4). In an effort to eliminate the CYP3A4 inhibition while retaining its antiangiogenic activity, we designed and synthesized a series of derivatives in which the 1,2,4-triazole ring is replaced with various azoles and nonazoles. Among these analogues, 15n with tetrazole in place of 1,2,4-triazole exhibited optimal inhibition of human umbilical vein endothelial cell proliferation with an IC50 of 73 nM without a significant effect on CYP3A4 (EC50 > 20 µM). Similar to itraconazole, 15n induced Niemann-Pick C phenotype (NPC phenotype) and blocked AMPK/mechanistic target of rapamycin signaling. These results suggest that 15n is a promising angiogenesis inhibitor that can be used in combination with most other known anticancer drugs.


Assuntos
Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Itraconazol/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Inibidores do Citocromo P-450 CYP3A/química , Avaliação Pré-Clínica de Medicamentos/métodos , Células Endoteliais da Veia Umbilical Humana , Humanos , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/antagonistas & inibidores , Tetrazóis/química
8.
Antiviral Res ; 156: 55-63, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29807040

RESUMO

Itraconazole (ITZ) is a well-known, FDA-approved antifungal drug that is also in clinical trials for its anticancer activity. ITZ exerts its anticancer activity through several disparate targets and pathways. ITZ inhibits angiogenesis by hampering the functioning of the vascular endothelial growth receptor 2 (VEGFR2) and by indirectly inhibiting mTOR signaling. Furthermore, ITZ directly inhibits the growth of several types of tumor cells by antagonizing Hedgehog signaling. Recently, we reported that ITZ also has broad-spectrum antiviral activity against enteroviruses, cardioviruses and hepatitis C virus, independent of established ITZ-activities but instead via a novel target, oxysterol-binding protein (OSBP), a cellular lipid shuttling protein. In this study, we analyzed which structural features of ITZ are important for the OSBP-mediated antiviral activity. The backbone structure, consisting of five rings, and the sec-butyl chain are important for antiviral activity, whereas the triazole moiety, which is critical for antifungal activity, is not. The features required for OSBP-mediated antiviral activity of ITZ overlap mostly with published features required for inhibition of VEGFR2 trafficking, but not Hh signaling. Furthermore, we use in silico studies to explore how ITZ could bind to OSBP. Our data show that several pharmacological activities of ITZ can be uncoupled, which is a critical step in the development of ITZ-based antiviral compounds with greater specificity and reduced off-target effects.


Assuntos
Antivirais/farmacologia , Itraconazol/farmacologia , Picornaviridae/efeitos dos fármacos , Receptores de Esteroides/metabolismo , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos , Antivirais/química , Células HeLa , Humanos , Itraconazol/química , Simulação de Dinâmica Molecular , Picornaviridae/fisiologia , Ligação Proteica
9.
Eur J Med Chem ; 144: 751-757, 2018 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-29291442

RESUMO

Ipomoeassin F, a plant-derived macrolide, exhibited single-digit nanomolar growth inhibition activity against many cancer cell lines. In this report, a series of 5-oxa/aza analogues was prepared and screened for cytotoxicity. Replacement of 5-CH2 with O/NH simplified the synthesis and led to only a small activity loss. N-methylation almost completely restored the potency. Further studies with additional 5-oxa analogues suggested, for the first time, that size and flexibility of the ring also significantly influence the bioactivity of ipomoeassin F.


Assuntos
Antineoplásicos/farmacologia , Compostos Aza/farmacologia , Glicoconjugados/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos Aza/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glicoconjugados/síntese química , Glicoconjugados/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
10.
Bioorg Med Chem Lett ; 27(12): 2752-2756, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28465102

RESUMO

Ipomoeassin F is a plant-derived macrocyclic glycolipid with single-digit nanomolar IC50 values against cancer cell growth. In previous structure-activity relationship studies, we have demonstrated that certain modifications around the fucoside moiety did not cause significant cytotoxicity loss. To further elucidate the effect of the fucoside moiety on the biological activity, we describe here the design and synthesis of several fucose-truncated monosaccharide analogues of ipomoeassin F. Subsequent biological evaluation strongly suggests that the 6-membered ring of the fucoside moiety is essential to the overall conformation of the molecule, thereby influencing bioactivity.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Desenho de Fármacos , Fucose/farmacologia , Glicoconjugados/farmacologia , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fucose/química , Glicoconjugados/síntese química , Glicoconjugados/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
11.
J Org Chem ; 82(9): 4977-4985, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28394135

RESUMO

An efficient synthetic route for ipomoeassin F and its tiglate-modified analogues was developed. The route features late-stage conformation-controlled highly regioselective esterification of the glucose diol in the disaccharide core. The results from the NCI-60 cell line screens of ipomoeassin F were reported for the first time. Moreover, two new C-3-cinnamoyl-Glcp analogues (2 and 3) were prepared. Their in-house cytotoxicity data convey an important message that both identity and positioning of the two α,ß-unsaturated esters are crucial. They are not interchangeable.


Assuntos
Cinamatos/química , Crotonatos/química , Glicoconjugados/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Hemiterpenos , Humanos , Análise Espectral/métodos
12.
ACS Chem Biol ; 12(1): 174-182, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28103683

RESUMO

The antifungal drug itraconazole was recently found to exhibit potent antiangiogenic activity and has since been repurposed as an investigational anticancer agent. Itraconazole has been shown to exert its antiangiogenic activity through inhibition of the mTOR signaling pathway, but the molecular mechanism of action was unknown. We recently identified the mitochondrial protein VDAC1 as a target of itraconazole and a mediator of its activation of AMPK, an upstream regulator of mTOR. However, VDAC1 could not account for the previously reported inhibition of cholesterol trafficking by itraconazole, which was also demonstrated to lead to mTOR inhibition. In this study, we demonstrate that cholesterol trafficking inhibition by itraconazole is due to direct inhibition of the lysosomal protein NPC1. We further map the binding site of itraconazole to the sterol-sensing domain of NPC1 using mutagenesis, competition with U18666A, and molecular docking. Finally, we demonstrate that simultaneous AMPK activation and cholesterol trafficking inhibition leads to synergistic inhibition of mTOR, endothelial cell proliferation, and angiogenesis.


Assuntos
Inibidores da Angiogênese/farmacologia , Antifúngicos/farmacologia , Proteínas de Transporte/metabolismo , Itraconazol/farmacologia , Glicoproteínas de Membrana/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Transporte Biológico/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colesterol/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Simulação de Acoplamento Molecular , Proteína C1 de Niemann-Pick , Serina-Treonina Quinases TOR/antagonistas & inibidores
13.
Org Lett ; 18(7): 1674-7, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26998757

RESUMO

Ipomoeassin F, the flagship congener of a resin glycoside family exhibited single-digit nanomolar IC50 values against several cancer cell lines. To facilitate drug discovery based on this unique yet underexplored natural product, we performed the most sophisticated SAR studies of ipomoeassin F to date, which not only greatly bettered our understanding of its pharmacophore but also led to the discovery of two new derivatives (3 and 27) with similar potency but improved synthetic profile. The work presented here opens new avenues toward harnessing the medicinal potential of the ipomoeassin family of glycolipids in the future.


Assuntos
Antineoplásicos/síntese química , Glicoconjugados/síntese química , Glicoconjugados/farmacologia , Antineoplásicos/química , Produtos Biológicos , Linhagem Celular Tumoral , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Glicoconjugados/química , Humanos , Concentração Inibidora 50 , Estrutura Molecular
14.
J Org Chem ; 80(18): 9279-91, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26317990

RESUMO

Ipomoeassin F, a macrolide glycoresin containing an embedded disaccharide, possesses potent in vitro antitumor activity with an unknown mechanism of function. It inhibits tumor cell growth with single-digit nanomolar IC50 values, superior to many clinical chemotherapeutic drugs. To facilitate translation of its bioactivity into protein function for drug development, we report here a new synthesis for the gram-scale production of ipomoeassin F (3.8% over 17 linear steps) from commercially available starting materials. The conformation-controlled subtle reactivity differences of the hydroxyl groups in carbohydrates were utilized to quickly construct the disaccharide core, which, along with judicial selection of protecting groups, made the current synthesis very efficient. The same strategy was also applied to the smooth preparation of the 11R-epimer of ipomoeassin F for the first time. Cytotoxicity assays demonstrated the crucial role of the natural 11S configuration. In addition, cell cycle analyses and apoptosis assays on ipomoeassin F and/or its epimer were conducted. This work has laid a solid foundation for understanding the medicinal potential of the ipomoeassin family of glycolipids in the future.


Assuntos
Antineoplásicos/síntese química , Glicoconjugados/síntese química , Glicolipídeos/química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Glicoconjugados/química , Humanos , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA