Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2304585, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411324

RESUMO

The innate immune response is crucial to inflammation, but how neutrophils and macrophages act in bone repair and tissue engineering treatment strategies await clarification. In this study, it is found that N2 neutrophils release stronger "eat me" signals to induce macrophage phagocytosis and polarize into the M2 anti-inflammatory phenotype. Guided by this biological mechanism, a mesoporous bioactive glass scaffold (MBG) is filled with hyaluronic acid methacryloyl (HAMA) hydrogel loaded with Transforming growth factor-ß1 (TGFß1) adenovirus (Ad@H), constructing a genetically engineered composite scaffold (Ad@H/M). The scaffold not only has good hydrophilicity and biocompatibility, but also provides mechanical stress support for bone repair. Adenovirus infection quickly induces N2 neutrophils, upregulating NF-κB and MAPK signaling pathways through Toll-like receptor 4 (TLR4) to promote the inflammatory response and macrophage phagocytosis. Macrophages perform phagocytosis and polarize towards the M2 phenotype, mediating the inflammatory response by inhibiting the PI3K-AKT-NF-κB pathway, maintaining homeostasis of the osteogenic microenvironment. The role of the Ad@H/M scaffold in regulating early inflammation and promoting long-term bone regeneration is further validated in vivo. In brief, this study focuses on the cascade of reactions between neutrophils and macrophage subtypes, and reports a composite scaffold that coordinates the innate immune response to promote bone repair.

2.
Environ Sci Technol ; 52(19): 10997-11006, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30153412

RESUMO

Despite their crucial roles in health and climate concerns, the gas-particle partitioning of carbonyl compounds is poorly characterized in the ambient atmosphere. In this study, we investigate their partitioning by simultaneously measuring six carbonyl compounds (formaldehyde, acetaldehyde, acetone, propionaldehyde, glyoxal, and methylglyoxal) in the gas and particle phase at an urban site in Beijing. The field-derived partitioning coefficients ( Kpf) are in the range of 10-5-10-3 m3 µg-1, and the corresponding effective Henry's law coefficients ( KHf) should be 107-109 M atm-1. The Pankow's absorptive partitioning theory and Henry's law both significantly underestimate concentrations of particle-phase carbonyl compounds (105-106 times and >103 times, respectively). The observed "salting-in" effects only partially explain the enhanced partitioning to particles, which is approximately 1 order of magnitude. The measured Kpf values are higher at low relative humidity, and the overall effective vapor pressure of these carbonyl species are lower than their hydrates, indicating that carbonyl oligomers potentially formed in highly concentrated particle phase. The reaction kinetics of oligomer formation should be included if applying Henry's law to low-to-moderate relative humidity, and the high partitioning coefficients observed need to be proved by further field and laboratory studies. These findings provide deeper insights into the formation of carbonyl secondary organic aerosols in the ambient atmosphere.


Assuntos
Atmosfera , Compostos Orgânicos , Aerossóis , Pequim , Glioxal
3.
Braz. j. microbiol ; 47(4): 828-834, Oct.-Dec. 2016. tab, graf
Artigo em Inglês | LILACS | ID: biblio-828198

RESUMO

Abstract The biodegradation of synthetic dyes by fungi is emerging as an effective and promising approach. In the present study, freshwater fungal strains isolated from submerged woods were screened for the decolorization of 7 synthetic dyes. Subsequently, 13 isolates with high decolorization capability were assessed in a liquid system; they belonged to 9 different fungal species. Several strains exhibited a highly effective decolorization of multiple types of dyes. New absorbance peaks appeared after the treatment with 3 fungal strains, which suggests that a biotransformation process occurred through fungal biodegradation. These results showed the unexploited and valuable capability of freshwater fungi for the treatment of dye-containing effluents. The ability of certain fungi to decolorize dyes is reported here for the first time.


Assuntos
Biodegradação Ambiental , Corantes/metabolismo , Água Doce/microbiologia , Fungos/isolamento & purificação , Fungos/metabolismo , Corantes/química , Fungos/classificação , Fungos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA