Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(41): e202211919, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35981974

RESUMO

Regulation of the atom-atom interspaces of dual-atom catalysts is essential to optimize the dual-atom synergy to achieve high activity but remains challenging. Herein, we report an effective strategy to regulate the Pt1 -Ni1 interspace to achieve Pt1 Ni1 dimers and Pt1 +Ni1 heteronuclear dual-single-atom catalysts (HDSACs) by tailoring steric hindrance between metal precursors during synthesis. Spectroscopic characterization reveals obvious electron transfers in Pt1 Ni1 oxo dimers but not in Pt1 +Ni1 HDSAC. In the hydrolysis of ammonia borane (AB), the H2 formation rates show an inverse proportion to the Pt1 -Ni1 interspace. The rate of Pt1 Ni1 dimers is ≈13 and 2 times higher than those of Pt1 and Pt1 +Ni1 HDSAC, manifesting the interspace-dependent synergy. Theoretical calculations reveal that the bridging OH group in Pt1 Ni1 dimers promotes water dissociation, while Pt1 facilitates the cleavage of B-H bonds in AB, which boosts a bifunctional synergy to accelerate H2 production cooperatively.

2.
Nat Nanotechnol ; 16(10): 1141-1149, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34312515

RESUMO

Atomically dispersed metal catalysts maximize atom efficiency and display unique catalytic properties compared with regular metal nanoparticles. However, achieving high reactivity while preserving high stability at appreciable loadings remains challenging. Here we solve the challenge by synergizing metal-support interactions and spatial confinement, which enables the fabrication of highly loaded atomic nickel (3.1 wt%) along with dense atomic copper grippers (8.1 wt%) on a graphitic carbon nitride support. For the semi-hydrogenation of acetylene in excess ethylene, the fabricated catalyst shows extraordinary catalytic performance in terms of activity, selectivity and stability-far superior to supported atomic nickel alone in the absence of a synergizing effect. Comprehensive characterization and theoretical calculations reveal that the active nickel site confined in two stable hydroxylated copper grippers dynamically changes by breaking the interfacial nickel-support bonds on reactant adsorption and making these bonds on product desorption. Such a dynamic effect confers high catalytic performance, providing an avenue to rationally design efficient, stable and highly loaded, yet atomically dispersed, catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA