Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34948377

RESUMO

For food quality and safety issues, the emergence of foodborne pathogenic bacteria has further accelerated the spread of antibiotic residues and drug resistance genes. To alleviate the harm caused by bacterial infections, it is necessary to seek novel antimicrobial agents as biopreservatives to prevent microbial spoilage. Nanoantimicrobials have been widely used in the direct treatment of bacterial infections. CNMs, formed by chitosan nanoparticles and peptides, are promising antibiotic alternatives for use as excellent new antibacterial drugs against pathogenic bacteria. Herein, the current study evaluated the function of CNMs in the protection of foodborne pathogen Escherichia coli (E. coli) O157 infection using an intestinal epithelial cell model. Antibacterial activity assays indicated that CNMs exerted excellent bactericidal activity against E. coli O157. Assessment of the cytotoxicity risks toward cells demonstrated that 0.0125-0.02% of CNMs did not cause toxicity, but 0.4% of CNMs caused cytotoxicity. Additionally, CNMs did not induced genotoxicity either. CNMs protected against E. coli O157-induced barrier dysfunction by increasing transepithelial electrical resistance, decreasing lactate dehydrogenase and promoting the protein expression of occludin. CNMs were further found to ameliorate inflammation via modulation of tumor factor α, toll-like receptor 4 and nuclear factor κB (NF-κB) expression via inhibition of mitogen-activated protein kinase and NF-κB activation and improved antioxidant activity. Taken together, CNMs could protect the host against E. coli O157-induced intestinal barrier damage and inflammation, showing that CNMs have great advantages and potential application as novel antimicrobial polymers in the food industry as food biopreservatives, bringing new hope for the treatment of bacterial infections.


Assuntos
Antibacterianos/farmacologia , Infecções por Escherichia coli/prevenção & controle , Escherichia coli O157/efeitos dos fármacos , Conservantes de Alimentos/farmacologia , Doenças Transmitidas por Alimentos/prevenção & controle , Peptídeos/farmacologia , Animais , Antibacterianos/química , Linhagem Celular , Quitosana/química , Quitosana/farmacologia , Infecções por Escherichia coli/patologia , Escherichia coli O157/fisiologia , Conservantes de Alimentos/química , Doenças Transmitidas por Alimentos/patologia , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Nanopartículas/química , Peptídeos/química , Suínos
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 67(5): 1153-60, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17331790

RESUMO

A new phosphorescence labeling reagent Triton-100X-4.0G-D (4.0G-D refers to 4.0-generation dendrimers) was found. Quantitative specific affinity adsorption (AA) reaction between Triton-100X-4.0G-D-WGA and glucose (G) was carried out on the surface of nitrocellulose membrane (NCM), and the DeltaI(p) of the product of AA reaction was linear correlation to the content of G. Based on the facts above, a new method for the determination of trace G was established by WGA labeled with Triton-100X-4.0G-D affinity adsorption solid substrate room temperature phosphorimetry (Triton-100X-4.0G-D-WGA-AA-SS-RTP). This research showed that AA-SS-RTP for either direct method or sandwich method could combine very well the characteristics of both the high sensitivity of SS-RTP and the specificity of the AA reaction. Detection limits (LD) were 0.24 fg spot(-1) for direct method and 0.18 fg spot(-1) for sandwich method, indicating both of them were of high sensitivity. The method has been applied to the determination of the content of G in human serum, and the results were coincided with those obtained by glucose oxidize enzyme method. It can also be applied to forecast accurately some human diseases, such as primary hepatic carcinoma, cirrhosis, acute and chronic hepatitis, transfer hepatocellular, etc. Meanwhile, the mechanism for the determination of G with AA-SS-RTP was discussed.


Assuntos
Dendrímeros/metabolismo , Doença , Glucose/análise , Lectinas/metabolismo , Medições Luminescentes/métodos , Temperatura , Triticum/química , Adsorção , Dendrímeros/química , Dessecação , Humanos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA