Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1402831, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817925

RESUMO

Pandemics caused by respiratory viruses, such as the SARS-CoV-1/2, influenza virus, and respiratory syncytial virus, have resulted in serious consequences to humans and a large number of deaths. The detection of such respiratory viruses in the early stages of infection can help control diseases by preventing the spread of viruses. However, the diversity of respiratory virus species and subtypes, their rapid antigenic mutations, and the limited viral release during the early stages of infection pose challenges to their detection. This work reports a multiplexed microfluidic immunoassay chip for simultaneous detection of eight respiratory viruses with noticeable infection population, namely, influenza A virus, influenza B virus, respiratory syncytial virus, SARS-CoV-2, human bocavirus, human metapneumovirus, adenovirus, and human parainfluenza viruses. The nanomaterial of the nanozyme (Au@Pt nanoparticles) was optimized to improve labeling efficiency and enhance the detection sensitivity significantly. Nanozyme-binding antibodies were used to detect viral proteins with a limit of detection of 0.1 pg/mL with the naked eye and a microplate reader within 40 min. Furthermore, specific antibodies were screened against the conserved proteins of each virus in the immunoassay, and the clinical sample detection showed high specificity without cross reactivity among the eight pathogens. In addition, the microfluidic chip immunoassay showed high accuracy, as compared with the RT-PCR assay for clinical sample detection, with 97.2%/94.3% positive/negative coincidence rates. This proposed approach thus provides a convenient, rapid, and sensitive method for simultaneous detection of eight respiratory viruses, which is meaningful for the early diagnosis of viral infections. Significantly, it can be widely used to detect pathogens and biomarkers by replacing only the antigen-specific antibodies.

2.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 362-365, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38595259

RESUMO

Ischemic colitis is a disease in which local tissue in the intestinal wall dies to varying degrees due to insufficient blood supply to the colon. Risk factors include cardiovascular disease, diabetes, chronic kidney disease, chronic obstructive pulmonary disease, etc. Typical clinical manifestations of the disease are abdominal pain and hematochezia. The most common locations are the watershed areas of splenic flexure and rectosigmoid junction. The lesions are segmental and clearly demarcated from normal mucosa under endoscopy. The digestive tract is a common extra-pulmonary organ affected by the novel coronavirus, which can be directly damaged by the virus or indirectly caused by virus-mediated inflammation and hypercoagulability. The corona virus disease 2019 (COVID-19) associated intestinal injury can be characterized by malabsorption, malnutrition, intestinal flora shift, etc. CT can show intestinal ischemia, intestinal wall thickening, intestinal wall cystoid gas, intestinal obstruction, ascites, intussusception and other signs. In this study, we reported a case of ischemic colitis in a moderate COVID-19 patient. The affected area was atypical and the endoscope showed diffuse lesions from the cecum to the rectosigmoid junction. No signs of intestinal ischemia were found on imaging and clear thrombosis in small interstitial vessels was found in pathological tissue. Combined with the fact that the patient had no special risk factors in his past history, the laboratory tests indicated elevated ferritin and D-dimer, while the autoantibodies and fecal etiology results were negative, we speculated that the hypercoagulability caused by novel coronavirus infection was involved in the occurrence and development of the disease in this patient. After prolonged infusion support and prophylactic anti-infection therapy, the patient slowly resumed diet and eventually went into remission. Finally, we hoped to attract clinical attention with the help of this case of moderate COVID-19 complicated with ischemic colitis which had a wide range of lesions and a slow reco-very. For patients with abdominal pain and blood in the stool after being diagnosed as COVID-19, even if they are not severe COVID-19, they should be alert to the possibility of ischemic colitis, so as not to be mistaken for gastrointestinal reactions related to COVID-19.


Assuntos
COVID-19 , Colite Isquêmica , Colite , Trombofilia , Humanos , Colite Isquêmica/etiologia , Colite Isquêmica/diagnóstico , Colite Isquêmica/patologia , COVID-19/complicações , Isquemia/complicações , Trombofilia/complicações , Dor Abdominal/complicações
3.
Front Oncol ; 13: 1227606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941546

RESUMO

Background: Interferon-γ (IFN-γ) is a key cytokine with diverse biological functions, including antiviral defense, antitumor activity, immune regulation, and modulation of cellular processes. Nonetheless, its role in pancreatic cancer (PC) therapy remains debated. Therefore, it is worthwhile to explore the role of Interferon-γ related genes (IFN-γGs) in the progression of PC development. Methodology: Transcriptomic data from 930 PC were sourced from TCGA, GEO, ICGC, and ArrayExpress, and 93 IFN-γGs were obtained from the MSigDB. We researched the characteristics of IFN-γGs in pan-cancer. Subsequently, the cohort of 930 PC was stratified into two distinct subgroups using the NMF algorithm. We then examined disparities in the activation of cancer-associated pathways within these subpopulations through GSVA analysis. We scrutinized immune infiltration in both subsets and probed classical molecular target drug sensitivity variations. Finally, we devised and validated a novel IFN-γ related prediction model using LASSO and Cox regression analyses. Furthermore, we conducted RT-qPCR and immunohistochemistry assays to validate the expression of seven target genes included in the prediction model. Results: We demonstrated the CNV, SNV, methylation, expression levels, and prognostic characteristics of IFN-γGs in pan-cancers. Notably, Cluster 2 demonstrated superior prognostic outcomes and heightened immune cell infiltration compared to Clusters 1. We also assessed the IC50 values of classical molecular targeted drugs to establish links between IFN-γGs expression levels and drug responsiveness. Additionally, by applying our prediction model, we segregated PC patients into high-risk and low-risk groups, identifying potential benefits of cisplatin, docetaxel, pazopanib, midostaurin, epothilone.B, thapsigargin, bryostatin.1, and AICAR for high-risk PC patients, and metformin, roscovitine, salubrinal, and cyclopamine for those in the low-risk group. The expression levels of these model genes were further verified through HPA website data and qRT-PCR assays in PC cell lines and tissues. Conclusion: This study unveils IFN-γGs related molecular subsets in pancreatic cancer for the first time, shedding light on the pivotal role of IFN-γGs in the progression of PC. Furthermore, we establish an IFN-γGs related prognostic model for predicting the survival of PC, offering a theoretical foundation for exploring the precise mechanisms of IFN-γGs in PC.

4.
Sci Bull (Beijing) ; 68(22): 2779-2792, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37863773

RESUMO

Immunotherapy has revolutionized cancer therapy, using chemical or biological agents to reinvigorate the immune system. However, most of these agents have poor tumor penetration and inevitable side effects that complicate therapeutic outcomes. Electrical stimulation (ES) is a promising alternative therapy against cancers that does not involve chemical or biological agents but is limited in the fabrication and operation of complex micrometer-scale ES devices. Here, we present an optically microprinted flexible interdigital electrode with a gold-plated polymer microneedle array to generate alternating electric fields for cancer treatment. A flexible microneedle-array-integrated interdigital electrode (FMIE) was fabricated by combining optical 3D microprinting and electroless plating processes. FMIE-mediated ES of cancer cells induced necrotic cell death through mitochondrial Ca2+ overload and increased intracellular reactive oxygen species (ROS) production. This led to the release of damage-associated molecular patterns that activated the immune response and potentiated immunogenic cell death (ICD). FMIE-based ES has an excellent safety profile and systemic anti-tumor effects, inhibiting the growth of primary and distant tumors as well as melanoma lung metastasis. FMIE-based ES-driven cancer immunomodulation provides a new pathway for drug-free cancer therapy.


Assuntos
Imunoterapia , Neoplasias Pulmonares , Humanos , Eletrodos , Estimulação Elétrica , Fatores Biológicos
5.
Nano Lett ; 23(19): 9133-9142, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37767907

RESUMO

Immunotherapy has emerged as a triumph in the treatment of malignant cancers. Nevertheless, current immunotherapeutics are insufficient in addressing tumors characterized by tumor cells' inadequate antigenicity and the tumor microenvironment's low immunogenicity (TME). Herein, we developed a novel multifunctional nanoassembly termed FMMC through the self-assembly of indoleamine 2,3-dioxygenase 1 (IDO-1) inhibitor 1-methyl-tryptophan prodrug (FM), Ce6, and ionic manganese (Mn2+) via noncovalent interactions. The laser-ignited FMMC treatment could induce effective immunogenic cell death and activate the STING/MHC-I signaling pathway, thus deeply sculpting the tumor-intrinsic antigenicity to achieve dendritic cell (DC)-dependent and -independent T cell responses against tumors. Meanwhile, by inhibiting IDO-1, FMMC could lead to immunosuppressive TME reversion to an immunoactivated one. FMMC-based phototherapy led to the up-regulation of programmed death-ligand 1 (PD-L1), enhancing the sensitivity of tumors to anti-PD-1 therapy. Furthermore, the incorporation of Mn2+ into FMMC resulted in an augmented longitudinal relaxivity and enhanced the MRI for monitoring the growth of primary tumors and lung metastases. Collectively, the superior reprogramming performance of immunosuppressive tumor cells and TME, combined with excellent anticancer efficacy and MRI capability, made FMMC a promising immune nanosculptor for cancer theranostics.


Assuntos
Imunoterapia , Fototerapia , Linfócitos T , Transdução de Sinais , Células Dendríticas , Microambiente Tumoral , Linhagem Celular Tumoral
6.
Funct Integr Genomics ; 23(3): 263, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540295

RESUMO

Ubiquitination-related genes (URGs) exerted a crucial part in a variety of human disease disorders; however, their association with pancreatic adenocarcinoma (PAAD) had yet to be clearly described. We aimed to comprehensively characterize the contributions of URGs in PAAD through in silico analysis and experimental validation, and then identified a robust mRNA-lncRNA-based molecular prognostic panel for patients with PAAD using bulk RNA-sequencing and single-cell RNA-sequencing data. Initially, we collected the multi-omics data from TCGA platform to depict a comprehensive landscape of URGs in pan-cancer. Furthermore, we were accurate to PAAD for in-depth analysis. Significant differences of the activation of ubiquitination pathways and the expression of URGs were detected between normal and malignant cells. Unsupervised hierarchical clustering determined two PAAD subtypes with distinct clinical outcomes, ubiquitination pathway activities, immune microenvironment, and functional annotation characteristics. The expression profiles of ubiquitination-associated mRNAs and lncRNAs in the training and validation datasets were utilized to develop and verify a novel ubiquitination-related mRNA-lncRNA prognostic panel, which had a satisfied prediction efficiency. Our ubiquitination-associated model could function as an effective prognostic index and outperformed four other recognized panels in evaluating PAAD patients' survival status. Tumor immune microenvironment, mutation burden, and chemotherapy response were intensively explored to demonstrate the underlying mechanism of prognostic difference according to our panel. Our findings also revealed that FTI-277, a farnesyltransferase inhibitor, had a better curative effect in high-risk patients, while MK-2206, an Akt allosteric inhibitor, had a superior therapeutic effect in low-risk patients. The real-time PCR results uncovered the RNA expression of AC005062.1 in all the three PAAD cell lines was elevated several thousandfold. In conclusion, our URGs-based classification panel could be triumphantly served as a prediction tool for survival evaluation in patients with PAAD, and the genes in this panel could be developed as a potential target in PAAD therapy.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , RNA Longo não Codificante , Humanos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , RNA Longo não Codificante/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Prognóstico , Estudos Prospectivos , Microambiente Tumoral , Neoplasias Pancreáticas
7.
Medicine (Baltimore) ; 102(20): e33521, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37335741

RESUMO

Pancreatic adenocarcinoma (PAAD) is one of the most common malignancies worldwide with an increasing incidence and poor outcome due to the lack of effective diagnostic and treatment methods. Emerging evidence implicates that emodin displays extensive spectrum anticancer properties. Differential expression genes in PAAD patients were analyzed by Gene Expression Profiling Interactive Analysis (GEPIA) website, and the targets of emodin were obtained via Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. Subsequently, enrichment analyses were performed using R software. A protein-protein interaction (PPI) network was constructed by STRING database and Cytoscape software was used to identify the hub genes. Prognostic value and immune infiltration landscapes were explored through Kaplan-Meier plotter (KM plotter) website and the Single-Sample Gene Set Enrichment Analysis package of R. Finally, molecular docking was used to computationally verify the interaction of ligand and receptor proteins. A total of 9191 genes were significantly differentially expressed in PAAD patients and 34 potential targets of emodin were obtained. Intersections of the 2 groups were considered as potential targets of emodin against PAAD. Functional enrichment analyses illustrated that these potential targets were linked to numerous pathological processes. Hub genes identified through PPI networks were correlated with poor prognosis and infiltration level of different immune cells in PAAD patients. Perhaps emodin interacted with the key molecules and regulate the activity of them. We revealed the inherent mechanism of emodin against PAAD with the aid of network pharmacology, which provided reliable evidence and a novel guideline for clinical treatment.


Assuntos
Adenocarcinoma , Emodina , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Emodina/farmacologia , Emodina/uso terapêutico , Farmacologia em Rede , Simulação de Acoplamento Molecular , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas
8.
J Control Release ; 357: 310-318, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019286

RESUMO

Dendritic cells (DCs), the primary antigen-presenting cells in the immune system, play a critical role in regulating tumor immune responses. However, the tumor immunosuppressive microenvironment severely impedes the process of antigen-presenting and DC maturation, thereby limiting the efficacy of cancer immunotherapy. In this work, a pH-responsive polymer nanocarrier (PAG) modified with aminoguanidine (AG) was constructed for the efficient delivery of bortezomib (BTZ) through bidentate hydrogen bonds and electrostatic adsorption formed between guanidine groups of PAG and boronic acid groups of BTZ. The obtained PAG/BTZ nanoparticles exhibited pH-responsive release of BTZ and AG in the acidic tumor microenvironment. On the one hand, BTZ induced potent immune activation by eliciting immunogenic cell death (ICD) and releasing damage-associated molecular patterns. On the other hand, the cationic AG significantly promoted antigen uptake by DCs and activated DC maturation. As a result, PAG/BTZ significantly stimulated tumoral infiltration of cytotoxic T lymphocytes (CTLs) and triggered robust antitumor immune responses. Thus, it showed potent antitumor efficacy when synergizing with an immune checkpoint-blocking antibody.


Assuntos
Nanopartículas , Neoplasias , Humanos , Bortezomib/farmacologia , Portadores de Fármacos/química , Guanidina , Neoplasias/tratamento farmacológico , Antígenos , Imunidade , Nanopartículas/química , Imunoterapia , Linhagem Celular Tumoral , Microambiente Tumoral
9.
Adv Healthc Mater ; 12(18): e2202977, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36878223

RESUMO

Peptide-based immune checkpoint inhibitors exhibit remarkable therapeutic benefits although their application is hindered by quick blood clearance and low affinity with receptors. The modification of the peptides into artificial antibodies is an ideal platform to solve these problems, and one of the optional pathways is the conjugation of peptides with a polymer. More importantly, the bridging effect, mediated by bispecific artificial antibodies, could promote the interaction of cancer cells and T cells, which will benefit cancer immunotherapy. Herein, a bispecific peptide-polymer conjugate (octa PEG-PD1-PDL1) is prepared by simultaneously conjugating PD1-binding and PDL1-binding peptides onto 8-arm-PEG. octa PEG-PD1-PDL1 bridges T cells and cancer cells and thus enhances T cell-mediated cytotoxicity against cancer cells. Meanwhile, the tumor-targeting octa PEG-PD1-PDL1 increases the infiltration of cytotoxic T lymphocytes in tumors and reduces their exhaustion. It effectively activates the tumor immune microenvironment and exerts a potent antitumor effect against CT26 tumor models with a tumor inhibition rate of 88.9%. This work provides a novel strategy to enhance tumor immunotherapy through conjugating bispecific peptides onto a hyperbranched polymer to effectively engage target-effector cells.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Imunoterapia , Linfócitos T Citotóxicos , Anticorpos Biespecíficos/farmacologia , Peptídeos , Microambiente Tumoral
10.
Virchows Arch ; 482(4): 729-743, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36472661

RESUMO

Indolent T-cell lymphoproliferative disorder of the gastrointestinal tract (iTLPD-GI) is a rare neoplasm usually having an indolent clinical course and easily misdiagnosed as inflammatory bowel disease or other T-cell lymphomas. A subset of the disorders that progressed to overt peripheral T-cell lymphoma have been reported, and the etiology and pathogenesis are poorly understood. The current study retrospectively examined the pathological, molecular, and clinical features of 6 cases of iTLPD-GI. Hematoxylin and eosin staining, immunohistochemistry, in situ hybridization, T-cell receptor gene rearrangement, and next-generation sequencing (NGS) were performed with the diseased tissues. All the 6 patients were immunocompetent Chinese men, who presented with recurrent abdominal pain and diarrhea for 4 to 13 years. Histologically, the intestinal tissue was expanded by lymphoid infiltration, composed of small-to-medium-sized lymphocytes with gland intact. The neoplastic cells were CD4 - /CD8 + with expression of TIA1 and variable granzyme B in five cases, and the other one was CD4 + /CD8 - . Two of the 5 patients progressed to more aggressive T-cell lymphoma and died of disease with complications. NGS identified TET2 and DDX3X mutations in patient 1, and BIRC6 and REV3L mutations in patient 2. Literature review indicated that iTLPD-GI with CD4 - /CD8 + immunophenotype was more commonly reported in Chinese cases. Our limited data indicated CD4-/CD8 + iTLPD-GI have similar potential to progress to more aggressive T-cell lymphoma as that of CD4 + /CD8 - , and gradually increased expression of granzyme B and Ki-67 may be early signs of the disease progression. Gain of novel gene mutations may be indicators of the pathogenesis.


Assuntos
Neoplasias Gastrointestinais , Linfoma de Células T Periférico , Linfoma de Células T , Transtornos Linfoproliferativos , Masculino , Humanos , Granzimas , Estudos Retrospectivos , Transtornos Linfoproliferativos/diagnóstico , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/patologia , Neoplasias Gastrointestinais/diagnóstico , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Linfoma de Células T/patologia , Linfoma de Células T Periférico/diagnóstico , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/patologia , Linfócitos T/patologia , Progressão da Doença , DNA Polimerase Dirigida por DNA , Proteínas de Ligação a DNA
11.
Front Immunol ; 13: 985911, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311789

RESUMO

The extracellular matrix (ECM) is a vital component of the tumor microenvironment, which interplays with stromal and tumor cells to stimulate the capacity of cancer cells to proliferate, migrate, invade, and undergo angiogenesis. Nevertheless, the crucial functions of ECM-related genes (ECMGs) in pancreatic adenocarcinoma (PAAD) have not been systematically evaluated. Hence, a comprehensive evaluation of the ECMGs is required in pan-cancer, especially in PAAD. First, a pan-cancer overview of ECMGs was explored through the integration of expression profiles, prognostic values, mutation information, methylation levels, and pathway-regulation relationships. Seven ECMGs (i.e. LAMB3, LAMA3, ITGB6, ITGB4, ITGA2, LAMC2, and COL11A1) were identified to be hub genes of PAAD, which were obviously up-regulated in PAAD and considerably linked to tumor stage as well as prognosis. Subsequently, patients with PAAD were divided into 3 clusters premised on ECMG expression and ECM scores. Cluster 2 was the subtype with the best prognosis accompanied by the lowest ECM scores, further verifying ECM's significant contribution to the pathophysiological processes of PAAD. Significant differences were observed for oncogene and tumor suppressor gene expression, immune microenvironment, and chemotherapy sensitivity across three ECM subtypes. After applying a variety of bioinformatics methods, a novel and robust ECM-associated mRNA-lncRNA-based prognostic panel (ECM-APP) was developed and validated for accurately predicting clinical outcomes of patients with PAAD. Patients with PAAD were randomly categorized into the train, internal validation, and external validation cohorts; meanwhile, each patient was allocated into high-risk (unfavorable prognosis) and low-risk (favorable prognosis) populations premised on the expression traits of ECM-related mRNAs and lncRNAs. The discrepancy in the tumor mutation burden and immune microenvironment might be responsible for the difference in prognoses across the high-risk and low-risk populations. Overall, our findings identified and validated seven ECMGs remarkably linked to the onset and progression of PAAD. ECM-based molecular classification and prognostic panel aid in the prognostic assessment and personalized intervention of patients with PAAD.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , RNA Longo não Codificante , Humanos , Neoplasias Pancreáticas/patologia , Prognóstico , Adenocarcinoma/genética , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , RNA Mensageiro , Matriz Extracelular/metabolismo , Microambiente Tumoral/genética , Neoplasias Pancreáticas
12.
Biomaterials ; 288: 121737, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36031455

RESUMO

The clinical translation of nanomedicines has been impeded by the unfavorable tumor microenvironment (TME), particularly the tortuous vasculature networks, which significantly influence the transport and distribution of nanomedicines into tumors. In this work, a smart pH-responsive bortezomib (BTZ)-loaded polyhydralazine nanoparticle (PHDZ/BTZ) is presented, which has a great capacity to augment the accumulation of BTZ in tumors by dilating tumor blood vessels via specific release of vasodilator hydralazine (HDZ). The Lewis acid-base coordination effect between the boronic bond of BTZ and amino of HDZ empowered PHDZ/BTZ nanoparticles with great stability and high drug loading contents. Once triggered by the acidic tumor environment, HDZ could be released quickly to remodel TME through tumor vessel dilation, hypoxia attenuation, and lead to an increased intratumoral BTZ accumulation. Additionally, our investigation revealed that this pH-responsive nanoparticle dramatically suppressed tumor growth, inhibited the occurrence of lung metastasis with fewer side effects and induced immunogenic cell death (ICD), thereby eliciting immune activation including massive cytotoxic T lymphocytes (CTLs) infiltration in tumors and efficient serum proinflammatory cytokine secretion compared with free BTZ treatment. Thus, with efficient drug loading capacity and potent immune activation, PHDZ nanoparticles exhibit great potential in the delivery of boronic acid-containing drugs aimed at a wide range of diseases.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Bortezomib/química , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/química , Neoplasias/tratamento farmacológico , Microambiente Tumoral
13.
Cell Mol Biol (Noisy-le-grand) ; 68(2): 138-144, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35869714

RESUMO

The study aimed to explore the influences of rapamycin on the retinal ganglion cells in rats with acute high intraocular pressure through regulating cyclooxygenase-2 (COX-2). 36 Sprague-Dawley rats were randomly assigned to the normal group (n=12), model group (n=12) and rapamycin group (n=12). The rats in the normal group were normally fed, those in the model group were prepared the model of acute high intraocular pressure and injected with normal saline, and those in the rapamycin group were given rapamycin. At 7 d after the operation, sampling was performed. The expressions of COX-2 and Caspase-3 were detected via immunohistochemistry, and their protein expressions were determined using Western blotting (WB). Quantitative polymerase chain reaction (qPCR) was conducted to measure the messenger ribonucleic acid (mRNA) expression levels, and cell apoptosis was evaluated using terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) assay. The content of interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α) was determined via enzyme-linked immunosorbent assay (ELISA). Compared with those in the normal group, the positive expression levels rose substantially in the other two groups, and those in the rapamycin group were notably lower (p<0.05). The relative protein expression levels in the model group and rapamycin group were higher, and the rapamycin group exhibited remarkable decreases (p<0.05). In comparison with the normal group, the other two groups had considerably raised relative mRNA expression levels and those in the rapamycin group were lower (p<0.05). The cells in the model and rapamycin groups had a higher apoptosis rate, and the apoptosis rate of cells in the rapamycin group was lower (p<0.05). Compared with that in the normal group, the content of IL-6 and TNF-α was elevated in the other two groups and their content in the rapamycin group was lower. Rapamycin inhibits COX-2 to repress inflammation and apoptosis, thereby exerting a protective effect on the retinal ganglion cells in rats with acute high intraocular pressure.


Assuntos
Células Ganglionares da Retina , Fator de Necrose Tumoral alfa , Animais , Apoptose , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Interleucina-6/metabolismo , Pressão Intraocular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/metabolismo , Sirolimo/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
14.
Front Immunol ; 13: 843322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401551

RESUMO

Although substantial progress has been made in biological research and clinical treatment in recent years, the clinical prognosis of oral squamous cell carcinoma (OSCC) is still not satisfactory. Tumor immune microenvironment (TIME) is a potential target, which plays an essential role in the response of anti-tumor immunity and immunotherapy. In this study, we used scRNA-seq data, revealing the heterogeneity of TIME between metastatic and primary site. We found that in the metastatic site, the content of cytotoxic T cells and classical activated macrophages (M1 macrophages) increases significantly, while alternately activated macrophages (M2 macrophages) and inflammatory cancer-associated fibroblasts (iCAFs) decrease, which may be due to the increased immunogenicity of OSCC cells in the metastatic site and the changes in some signal pathways. We also found that iCAFs may recruit alternately activated macrophages (M2 macrophages) by secreting CXCL12. Then, we described a regulatory network for communication between various TIME cells centered on OSCC cells, which can help to clarify the possible mechanism of lymph node metastasis in OSCC cells. By performing pseudotime trajectory analysis, we found that the expression CCDC43 is upregulated in more advanced OSCC cells and is an independent prognostic factor for poor living conditions. Other than this, the high expression of CCDC43 may impair the antitumor immunity of the human body and promote the metastasis of OSCC cells. Our research provides a profound insight into the immunological study of OSCC and an essential resource for future drug discovery.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Linfonodos/metabolismo , Metástase Linfática , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Microambiente Tumoral
15.
Folia Histochem Cytobiol ; 60(1): 55-65, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35103981

RESUMO

INTRODUCTION: Suppressing the phenotype of cancer stem cells (CSCs) is a promising treatment strategy for cancer. P38 mitogen-activated protein kinases (MAPK, p38) play an important role in the occurrence, development, and stemness maintenance of tumors. The aim of the current study was to investigate the effect of p38 on the stemness maintenance of CSCs in pancreatic cancer cell line PANC-1. MATERIAL AND METHODS: PANC-1 human pancreatic cancer cells were treated with 5-fluorouracil (5-FU) at 0.5 IC50, IC50, and 2 IC50 for 24 h. PANC-1 cells were treated for 24 h with 5-FU at 0.5IC50, IC50, and 2IC50 with or without VX-702, p38 phosphorylation inhibitor. Cells were resuspended in DMEM supplemented with 20 ng/ml epidermal growth factor, 2% B27, 5 mg/ml insulin, 20 g/ml basic fibroblast growth factor, and 10 µg/ml transferrin. Cells were seeded in ultra-low adhesion 6-well dishes to observe tumor spheroidization. The expression of CDK2, cyclin B1, cyclin D1, OCT4, SOX2, Nanog, and p38 was measured by Western blot. The mRNA expression of p38, OCT4, Nanog, and SOX2 was measured by RT-PCR. Flow cytometry was performed to evaluate the cell cycle, apoptosis, and proportion of CD44+CD133+ PANC-1 cells. RESULTS: 5-FU decreased cell viability and increased apoptosis. 5-FU suppressed the stemness maintenance of CSCs in PANC-1 cells, as demonstrated by the inhibition of tumorsphere formation, the decrease in CD44+CD133+ cells' fraction, and downregulation of OCT4, Nanog, and SOX2 expression. In addition, 5-FU inhibited the phosphorylation of p38 in PANC-1 cells. The phosphorylation of p38 was subsequently suppressed by VX-702, p38 mitogen-activated protein kinase inhibitor, which exhibited similar effects as those of 5-FU treatment. The effect of VX-702 on PANC-1 cells was further enhanced by 5-FU treatment. Thus, p38 inhibitor decreased the viability and increased the apoptosis of PANC-1 cells. P38 inhibitor suppressed the stemness maintenance of CSCs in PANC-1 cells, as demonstrated by the inhibition of tumorsphere formation, the decrease in CD44+CD133+ cells, and the downregulation of OCT4, Nanog, and SOX2 expression. CONCLUSIONS: These findings indicate that the inhibition of p38 phosphorylation suppresses the stemness maintenance and 5-FU resistance of PANC-1 cells, providing a potential therapeutic target for the prevention and treatment of pancreatic cancer.


Assuntos
Fluoruracila , Neoplasias Pancreáticas , Linhagem Celular Tumoral , Proliferação de Células , Fluoruracila/metabolismo , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Pâncreas , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo
16.
PLoS One ; 17(2): e0263311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35171924

RESUMO

Skin cutaneous melanoma (SKCM) is a common cancer of which mortality is increasing continuously. Our study conducted a series of analyses on the clinical significance of Serine/threonine kinase 17B (STK17B) in SKCM to provide a new biomarker for diagnosis and treatment. The RNA-sequence data were obtained from The Cancer Genome Atlas and Genotype-Tissue Expression databases. The data of 468 SKCM patients were divided into STK17B high- and low-expression groups and analyzed by Bioconductor package to identify the differential expressed genes. The R package of "clusterProfiler" was used for Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene-Set Enrichment Analysis analyses. A protein-protein interaction network and immune infiltration landscape were respectively constructed via STRING database and ssGSEA. STK17B had lower expression in SKCM than normal tissues. Besides, STK17B expression was significantly related to some clinicopathological characteristics in SKCM patients including T stage, Breslow depth, radiation therapy, melanoma Clark level, and pathologic stage. The Kaplan-Meier curve analyses revealed that the low expression of STK17B was correlated with poor overall survival and disease-specific survival. We constructed nomograms to predict the 1-, 3-, and 5-year survival of SKCM patients. The function enrichment analyses showed STK17B-related differential expressed genes were enriched in cellular differentiation and immune-related progress. STK17B expression level were positively correlated with infiltrating level of immune cells. In this study, we found that STK17B, which played an important role in immune infiltration, could be a new biomarker for diagnosis and prognosis in SKCM patients.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Biomarcadores Tumorais/genética , Melanoma/patologia , Nomogramas , Proteínas Serina-Treonina Quinases/genética , Neoplasias Cutâneas/patologia , Microambiente Tumoral , Idoso , Estudos de Casos e Controles , Bases de Dados Genéticas , Feminino , Seguimentos , Humanos , Masculino , Melanoma/genética , Melanoma/imunologia , Melanoma/radioterapia , Pessoa de Meia-Idade , Prognóstico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/radioterapia , Taxa de Sobrevida , Melanoma Maligno Cutâneo
17.
PLoS One ; 17(1): e0262737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35045126

RESUMO

INTRODUCTION: The coronavirus disease 2019 (COVID-19), emerged in late 2019, was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The risk factors for idiopathic pulmonary fibrosis (IPF) and COVID-19 are reported to be common. This study aimed to determine the potential role of differentially expressed genes (DEGs) common in IPF and COVID-19. MATERIALS AND METHODS: Based on GEO database, we obtained DEGs from one SARS-CoV-2 dataset and five IPF datasets. A series of enrichment analysis were performed to identify the function of upregulated and downregulated DEGs, respectively. Two plugins in Cytoscape, Cytohubba and MCODE, were utilized to identify hub genes after a protein-protein interaction (PPI) network. Finally, candidate drugs were predicted to target the upregulated DEGs. RESULTS: A total of 188 DEGs were found between COVID-19 and IPF, out of which 117 were upregulated and 71 were downregulated. The upregulated DEGs were involved in cytokine function, while downregulated DEGs were associated with extracellular matrix disassembly. Twenty-two hub genes were upregulated in COVID-19 and IPF, for which 155 candidate drugs were predicted (adj.P.value < 0.01). CONCLUSION: Identifying the hub genes aberrantly regulated in both COVID-19 and IPF may enable development of molecules, encoded by those genes, as therapeutic targets for preventing IPF progression and SARS-CoV-2 infections.


Assuntos
COVID-19/genética , Fibrose Pulmonar Idiopática/genética , COVID-19/patologia , COVID-19/virologia , Bases de Dados Genéticas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , SARS-CoV-2/isolamento & purificação , Suloctidil/farmacologia , Suloctidil/uso terapêutico , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Vasodilatadores/farmacologia , Vasodilatadores/uso terapêutico
18.
Front Med (Lausanne) ; 9: 1070072, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36777158

RESUMO

Pathology is the gold standard of clinical diagnosis. Artificial intelligence (AI) in pathology becomes a new trend, but it is still not widely used due to the lack of necessary explanations for pathologists to understand the rationale. Clinic-compliant explanations besides the diagnostic decision of pathological images are essential for AI model training to provide diagnostic suggestions assisting pathologists practice. In this study, we propose a new annotation form, PathNarratives, that includes a hierarchical decision-to-reason data structure, a narrative annotation process, and a multimodal interactive annotation tool. Following PathNarratives, we recruited 8 pathologist annotators to build a colorectal pathological dataset, CR-PathNarratives, containing 174 whole-slide images (WSIs). We further experiment on the dataset with classification and captioning tasks to explore the clinical scenarios of human-AI-collaborative pathological diagnosis. The classification tasks show that fine-grain prediction enhances the overall classification accuracy from 79.56 to 85.26%. In Human-AI collaboration experience, the trust and confidence scores from 8 pathologists raised from 3.88 to 4.63 with providing more details. Results show that the classification and captioning tasks achieve better results with reason labels, provide explainable clues for doctors to understand and make the final decision and thus can support a better experience of human-AI collaboration in pathological diagnosis. In the future, we plan to optimize the tools for the annotation process, and expand the datasets with more WSIs and covering more pathological domains.

19.
Sci Rep ; 11(1): 23649, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880328

RESUMO

Intrahepatic cholangiocarcinoma (CHOL) remains a rare malignancy, ranking as the leading lethal primary liver cancer worldwide. However, the biological functions of integrator complex subunit 8 (INTS8) in CHOL remain unknown. Thus, this research aimed to explore the potential role of INTS8 as a novel diagnostic or therapeutic target in CHOL. Differentially expressed genes (DEGs) in two Gene Expression Omnibus (GEO) datasets were obtained by the "RRA" package in R software. The "maftools" package was used to visualize the CHOL mutation data from The Cancer Genome Atlas (TCGA) database. The expression of INTS8 was detected by performing quantitative reverse transcription-PCR (qRT-PCR) and immunohistochemistry in cell lines and human samples. The association between subtypes of tumour-infiltrating immune cells (TIICs) and INTS8 expression in CHOL was determined by using CIBERSORT tools. We evaluated the correlations between INTS8 expression and mismatch repair (MMR) genes and DNA methyltransferases (DNMTs) in pan-cancer analysis. Finally, the pan-cancer prognostic signature of INTS8 was identified by univariate analysis. We obtained the mutation landscapes of an RRA gene set in CHOL. The expression of INTS8 was upregulated in CHOL cell lines and human CHOL samples. Furthermore, INTS8 expression was closely associated with a distinct landscape of TIICs, MMR genes, and DNMTs in CHOL. In addition, the high INTS8 expression group presented significantly poor outcomes, including overall survival (OS), disease-specific survival (DSS) and disease-free interval (DFI) (p < 0.05) in pan-cancer. INTS8 contributes to the tumorigenesis and progression of CHOL. Our study highlights the significant role of INTS8 in CHOL and pan-cancers, providing a valuable molecular target for cancer research.


Assuntos
Neoplasias dos Ductos Biliares/terapia , Colangiocarcinoma/terapia , Biologia Computacional/métodos , Subunidades Proteicas/fisiologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , Subunidades Proteicas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Mater Chem B ; 9(45): 9406-9412, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34746946

RESUMO

Tumor-selective drug delivery could enhance anticancer efficacy and avoid drug side effects. However, because of tumor heterogeneity, current nanoparticle-based drug delivery systems rarely improve clinical outcomes significantly, commonly only reducing systemic toxicity. In this work, a new tumor-specific, tyrosinase-responsive cascade amplification release nanoparticle (TR-CARN) was developed to fulfill the needs for tumor-specific drug delivery and high efficacy cancer treatment. Tyrosinase (Tyr) is specifically expressed in melanomas and can catalyze acetaminophen (APAP) to increase reactive oxygen species (ROS). It was therefore utilized here to initiate the ROS amplification procedure. In TR-CARN, a ROS-responsive prodrug BDOX was loaded into an amphiphilic polymer, and APAP was linked to the polymer through a ROS-cleavable thioether bond. TR-CARN caused reduced side effects during the delivery because of the low toxicity of BDOX. Once TR-CARN entered into the tumor, endogenous ROS triggered initial APAP and BDOX release. Tyr-mediated ROS synthesis by APAP then accelerated APAP and BDOX release and toxification. Consequently, TR-CARN achieved melanoma-specific treatment of high efficacy through the cascade amplification strategy with enhanced biosafety.


Assuntos
Doxorrubicina/química , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Melanoma/tratamento farmacológico , Monofenol Mono-Oxigenase/metabolismo , Nanopartículas/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Humanos , Pró-Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA