RESUMO
To facilitate the manufacturing of the thin-walled components of 2219 aluminum alloy, the quenching-forming-aging (Q-F-A) process has been increasingly utilized. However, natural aging (NA) after quenching significantly affects the cold forming performance of this alloy. In this study, experiments are conducted to investigate the effect of NA time on the cold forming performance of 2219 aluminum alloy. The results indicate that NA can weaken the Portevin-Le Chatelier (PLC) effect, thereby reducing its influence on the cold forming performance of the alloy. The PLC effect becomes indistinct when the aging time reaches 2 years. The yield strength of 2219 aluminum alloy increases monotonically with aging time, while the elongation first increases rapidly and then decreases. After an aging time of 2 years, the yield strength increases by 28.6% from that of newly quenched alloys. The strain hardening index and hardening coefficient indicate that short-term NA (less than 4 days) increases the work hardening rate, while long-term NA reduces it. Microstructural analysis shows that the strengthening effect of NA on 2219 aluminum alloy is mainly due to the growth of G.P. zones and the precipitation of θⳠphases. The NA precipitation behavior can also cause the aggregation of solute atoms and weaken the PLC effect.
RESUMO
Methods for optical tracking of pathogen-host interactions are of biomedical significance. We herein have reported a high molecular weight pH sensor (Den-pH) that is assembled in bacteria and then stably trapped in bacteria irrespective of bacterial membrane potentials. Endowed with acidity-triggered red fluorescence, Den-pH allows signal-on tracking of S. aureus in phagocytosis by macrophages. Intra-bacterial formation of multifunctional optical probes, which offers the advantage of overcoming the liability of conventional potential-sensitive dyes to dissipate from stressed bacteria, offers a new tool to study stressed pathogens.
Assuntos
Fagocitose , Staphylococcus aureus , Fluorescência , Concentração de Íons de Hidrogênio , MacrófagosRESUMO
Dysfunctional organelles and defective turnover of organelles are engaged in multiple human diseases, but are elusive to image with conventional organelle probes. To overcome this, we developed intra-mitochondrial CLICK to assess mitophagy (IMCLAM), using a pair of conventional ΔΨm probes, where each probe alone fails to track dysfunctional mitochondria. The in situ formed optical triad is stably trapped in mitochondria without resorting to ΔΨm. Utilizing an acidity-responsive ΔΨm probe, IMCLAM enabled fluorescence-on detection of mitophagy by sensing pH acidification upon delivery of mitochondria into lysosomes. Moreover, we applied IMCLAM to assay mitophagy induced by pharmacological compounds in living cells and wild-type zebrafish embryos. Thus, IMCLAM offers a simplified tool to study mitochondria and mitophagy and provide a basis for screening mitophagy-inducing compounds. Abbreviations: CCCP, carbonyl cyanide m-chlorophenylhydrazone; IMCLAM, intra-mitochondrial CLICK to assess mitophagy; ROX, X-rhodamine; SPAAC, stain-promoted azide-alkyne Click Chemistry; TPP, triphenylphosphonium.
Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Mitofagia/fisiologia , Organelas/fisiologia , Animais , Proteína 5 Relacionada à Autofagia/deficiência , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Células Cultivadas , Corantes Fluorescentes/química , Técnicas de Inativação de Genes , Células HeLa , Humanos , Técnicas In Vitro , Células MCF-7 , Melanoma Experimental , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Mitocôndrias/metabolismo , Peixe-ZebraRESUMO
Metabolic glycan labeling (MGL) has been employed for diverse purposes, such as cell surface glycan imaging and tumor surface engineering. We herein reported organelle-specific MGL (OMGL) for selective tagging of the inner limiting membrane of lysosomes over the cell surface. This is operated via acidity-promoted accumulation of optical probes in lysosomes and bioorthogonal ligation of the trapped probes with 9-azidosialic acid (AzSia) metabolically installed on lysosomal membrane proteins. Overcoming the limitation of classical organelle probes to dissipate from stressed organelles, OMGL enables optical tracking of pH-elevated lysosomes in exocytosis and membrane-permeabilized lysosomes in different cell death pathways. Thus, OMGL offers a new tool to study lysosome biology.
Assuntos
Lisossomos/metabolismo , Imagem Óptica , Polissacarídeos/metabolismo , Células HeLa , Humanos , Proteínas de Membrana Lisossomal/metabolismoRESUMO
Mitochondrial DNA (mtDNA) plays important roles in diverse physiological processes and myriad diseases. We herein report mtDNA imaging with a chameleon sensor containing a cationic rhodamine B (RB) entity for mitochondria targeting and a fluorogenic SYBR Green-I (SG) entity for DNA sensing. SG-RB selectively binds to mtDNA and gives green SG fluorescence in mitochondria of living cells but gives red RB fluorescence upon delivery of mitochondria into lysosomes in mitophagy. With the dual-color imaging, mtDNA aggregation and elevated mitophagy were identified in HeLa cells stressed with anticancer doxorubicin. These results suggest the utility of organelle-redirected DNA sensors for live cell imaging of mtDNA involved in myriad pathological disorders.
Assuntos
DNA Mitocondrial/análise , Microscopia Confocal/métodos , Antibióticos Antineoplásicos/farmacologia , Benzotiazóis , DNA Mitocondrial/química , Diaminas , Doxorrubicina/farmacologia , Células HeLa , Humanos , Lisossomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Compostos Orgânicos/química , Quinolinas , Rodaminas/químicaRESUMO
Dying cell clearance is critical for myriad biological processes such as tissue homeostasis. We herein report an enzyme-activated fluorescence cell labeling approach and its use for multicolor imaging of dying cell clearance. Diacetylated 4-hydroxymandelic acid (DHA)-conjugated dyes give rise to reactive quinone methides upon deacetylation in live cells, which in turn covalently labels cellular proteins. With partner cells tagged with distinct fluorescence, apoptotic cell clearance by Raw 264.7 macrophages and epithelial HeLa cells was captured by confocal microscopy, showing the potential of DHA-based cell labeling for investigating cell-cell interactions.