Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 95(1): e28383, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36477795

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global coronavirus disease 2019 (COVID-19) pandemic that has affected the lives of billions of individuals. However, the host-virus interactions still need further investigation to reveal the underling mechanism of SARS-CoV-2 pathogenesis. Here, transcriptomics analysis of SARS-CoV-2 infection highlighted possible correlation between host-associated signaling pathway and virus. In detail, cAMP-protein kinase (PKA) pathway has an essential role in SARS-CoV-2 infection, followed by the interaction between cyclic AMP response element binding protein (CREB) and CREB-binding protein (CBP) could be induced and leading to the enhancement of CREB/CBP transcriptional activity. The replication of Delta and Omicron BA.5 were inhibited by about 49.4% and 44.7% after knockdown of CREB and CBP with small interfering RNAs, respectively. Furthermore, a small organic molecule naphthol AS-E (nAS-E), which targets on the interaction between CREB and CBP, potently inhibited SARS-CoV-2 wild-type (WT) infection with comparable the half-maximal effective concentration (EC50 ) 1.04 µM to Remdesivir 0.57 µM. Compared with WT virus, EC50 in Calu-3 cells against Delta, Omicron BA.2, and Omicron BA.5 were, on average, 1.5-fold, 1.1-fold, and 1.5-fold higher, respectively, nAS-E had a satisfied antiviral effect against Omicron variants. Taken together, our study demonstrated the importance of CREB/CBP induced by cAMP-PKA pathway during SARS-CoV-2 infection, and further provided a novel CREB/CBP interaction therapeutic drug targets for COVID-19.


Assuntos
COVID-19 , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Interações Hospedeiro-Patógeno , Humanos , COVID-19/metabolismo , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Proteína de Ligação a CREB/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia
2.
Sci Transl Med ; 14(661): eabm7621, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35579533

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus driving the ongoing coronavirus disease 2019 (COVID-19) pandemic, continues to rapidly evolve. Because of the limited efficacy of vaccination in prevention of SARS-CoV-2 transmission and continuous emergence of variants of concern (VOCs), orally bioavailable and broadly efficacious antiviral drugs are urgently needed. Previously, we showed that the parent nucleoside of remdesivir, GS-441524, has potent anti-SARS-CoV-2 activity. Here, we report that esterification of the 5'-hydroxyl moieties of GS-441524 markedly improved antiviral potency. This 5'-hydroxyl-isobutyryl prodrug, ATV006, demonstrated excellent oral bioavailability in rats and cynomolgus monkeys and exhibited potent antiviral efficacy against different SARS-CoV-2 VOCs in vitro and in three mouse models. Oral administration of ATV006 reduced viral loads and alleviated lung damage when administered prophylactically and therapeutically to K18-hACE2 mice challenged with the Delta variant of SARS-CoV-2. These data indicate that ATV006 represents a promising oral antiviral drug candidate for SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , Pró-Fármacos , Adenosina/uso terapêutico , Monofosfato de Adenosina/análogos & derivados , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Camundongos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Ratos , SARS-CoV-2
3.
J Exp Med ; 218(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33464307

RESUMO

Virus-specific T cells play essential roles in protection against multiple virus infections, including SARS-CoV and MERS-CoV. While SARS-CoV-2-specific T cells have been identified in COVID-19 patients, their role in the protection of SARS-CoV-2-infected mice is not established. Here, using mice sensitized for infection with SARS-CoV-2 by transduction with an adenovirus expressing the human receptor (Ad5-hACE2), we identified SARS-CoV-2-specific T cell epitopes recognized by CD4+ and CD8+ T cells in BALB/c and C57BL/6 mice. Virus-specific T cells were polyfunctional and were able to lyse target cells in vivo. Further, type I interferon pathway was proved to be critical for generating optimal antiviral T cell responses after SARS-CoV-2 infection. T cell vaccination alone partially protected SARS-CoV-2-infected mice from severe disease. In addition, the results demonstrated cross-reactive T cell responses between SARS-CoV and SARS-CoV-2, but not MERS-CoV, in mice. Understanding the role of the T cell response will guide immunopathogenesis studies of COVID-19 and vaccine design and validation.


Assuntos
COVID-19/imunologia , Epitopos de Linfócito T/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Linfócitos T/imunologia , Linfócitos T/virologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/sangue , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/virologia , Chlorocebus aethiops , Reações Cruzadas , Mapeamento de Epitopos , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Células Vero
4.
Cell ; 182(3): 734-743.e5, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32643603

RESUMO

COVID-19, caused by SARS-CoV-2, is a virulent pneumonia, with >4,000,000 confirmed cases worldwide and >290,000 deaths as of May 15, 2020. It is critical that vaccines and therapeutics be developed very rapidly. Mice, the ideal animal for assessing such interventions, are resistant to SARS-CoV-2. Here, we overcome this difficulty by exogenous delivery of human ACE2 with a replication-deficient adenovirus (Ad5-hACE2). Ad5-hACE2-sensitized mice developed pneumonia characterized by weight loss, severe pulmonary pathology, and high-titer virus replication in lungs. Type I interferon, T cells, and, most importantly, signal transducer and activator of transcription 1 (STAT1) are critical for virus clearance and disease resolution in these mice. Ad5-hACE2-transduced mice enabled rapid assessments of a vaccine candidate, of human convalescent plasma, and of two antiviral therapies (poly I:C and remdesivir). In summary, we describe a murine model of broad and immediate utility to investigate COVID-19 pathogenesis and to evaluate new therapies and vaccines.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/prevenção & controle , Modelos Animais de Doenças , Pandemias/prevenção & controle , Pneumonia Viral/patologia , Pneumonia Viral/prevenção & controle , Vacinação , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , SARS-CoV-2 , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Organismos Livres de Patógenos Específicos , Transdução Genética , Células Vero , Carga Viral , Replicação Viral
5.
Pharmacol Res ; 158: 104850, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32360580

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread worldwide through person-to-person contact, causing a public health emergency of international concern. At present, there is no specific antiviral treatment recommended for SARS-CoV-2 infection. Liu Shen capsule (LS), a traditional Chinese medicine, has been proven to have a wide spectrum of pharmacological properties, such as anti-inflammatory, antiviral and immunomodulatory activities. However, little is known about the antiviral effect of LS against SARS-CoV-2. Herein, the study was designed to investigate the antiviral activity of SARS-CoV-2 and its potential effect in regulating the host's immune response. The inhibitory effect of LS against SARS-CoV-2 replication in Vero E6 cells was evaluated by using the cytopathic effect (CPE) and plaque reduction assay. The number of virions of SARS-CoV-2 was observed under transmission electron microscope after treatment with LS. Proinflammatory cytokine expression levels upon SARS-CoV-2 infection in Huh-7 cells were measured by real-time quantitative PCR assays. The results showed that LS could significantly inhibit SARS-CoV-2 replication in Vero E6 cells, and reduce the number of virus particles and it could markedly reduce pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß, IL-8, CCL-2/MCP-1 and CXCL-10/IP-10) production at the mRNA levels. Moreover, the expression of the key proteins in the NF-κB/MAPK signaling pathway was detected by western blot and it was found that LS could inhibit the expression of p-NF-κB p65, p-IκBα and p-p38 MAPK, while increasing the expression of IκBα. These findings indicate that LS could inhibit SARS-CoV-2 virus infection via downregulating the expression of inflammatory cytokines induced virus and regulating the activity of NF-κB/MAPK signaling pathway in vitro, making its promising candidate treatment for controlling COVID-19 disease.


Assuntos
Betacoronavirus/efeitos dos fármacos , Misturas Complexas/farmacologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , COVID-19 , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Humanos , Mediadores da Inflamação/metabolismo , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Vírion/efeitos dos fármacos
6.
Arch Virol ; 160(12): 2991-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26350772

RESUMO

Cells reprogram ongoing translation in response to viral infection, resulting in formation of stress granules (SGs), while viruses have evolved a variety of strategies to antagonize the host SG response. Previous literature reported that in BHK-1 cells, infection with dengue virus (DENV) interfered with the SG formation. In the current study, we further investigated SG formation in human epithelial A549 cells by detecting subcellular localization of two SG hallmarks, TIA-1 and G3BP1. In response to DENV type 2 (DENV2) and type 3 (DENV3) infection, G3BP1, but not TIA-1, was recruited into cytoplasmic granules in some cells, and viral protein synthesis was significantly impaired in the G3BP1-granule-containing cells. Knockdown of G3BP1 significantly rescued the dsRNA-mediated suppression of DENV2 replication. Furthermore, our data showed that the phosphorylation of protein kinase regulated by dsRNA (PKR) and eIF2α, as well as accumulation of dsRNA, mainly occurred at the late stage of viral infection. This work revealed that in DENV-infected A549 cells, G3BP1 granules were assembled independently of TIA-1 and had a negative impact on viral replication. This extends our understanding of the antagonistic relationship between the SG response and dengue virus infection.


Assuntos
Proteínas de Transporte/metabolismo , Vírus da Dengue/fisiologia , Dengue/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Proteínas de Transporte/genética , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/virologia , DNA Helicases , Dengue/virologia , Vírus da Dengue/genética , Células Epiteliais/virologia , Humanos , Pulmão/virologia , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Replicação Viral
7.
Wei Sheng Wu Xue Bao ; 46(3): 353-7, 2006 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-16933600

RESUMO

p19 gene, cry11Aa gene and p20 gene from Bacillus thuringienesis subsp. israelensis are organized as a single operon. It is reported that P20 polypeptide is not required for high-level expression of Cry11Aa and crystal formation in B. thuringiensis. It is deduced that P19 might relate to Cry11Aa crystallization. In this study, two recombinant plasmids pHcy1 and pHcy3 containing cryllAa gene were constructed, the latter absent from p19 gene encoding a possible accessory protein between cry11Aa promoter and cry11Aa gene. The recombinant plasmids were introduced into an acrystalliferous mutant 4Q7 of B. thuringiensis subsp. israelensis. SDS-PAGE showed that Cry11Aa protein per unit of culture medium had a higher expression level in 4Q7(pHcy1) with p19 and cry11Aa genes than in 4Q7(pHcy3) with only cry11Aa gene. Both two B. thuringiensis strains formed Cry11Aa crystals in a similar size and shape during sporulation. Toxicity bioassay showed 4Q7 (pHcy1) and 4Q7 (pHcy3) exhibited a comparable mosquito-larvicidal activity against 3rd-instar Culex quinquefasciatus. It indicated that accessory protein P19 did not have an effect on cry11Aa crystallization and high mosquitocidal toxicity. However, it could enhance Cry11Aa expression amount to a certain extent.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Bioensaio , Cristalização , Culex/efeitos dos fármacos , Endotoxinas/química , Endotoxinas/genética , Endotoxinas/farmacologia , Regulação Bacteriana da Expressão Gênica , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Microscopia Eletrônica de Transmissão , Plasmídeos/genética , Plasmídeos/metabolismo
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 26(12): 1724-7, 2006 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-17259106

RESUMO

OBJECTIVE: To construct an eukaryotic expression plasmid containing gp120 gene of HIV-1 subtype B and obtain gp120 gene expression in HepG2 cells. METHODS: According to the published gp120 gene sequence in Genbank, a pair of primers was designed and synthesized. The PCR amplification product of gp120 gene was cloned into pMD-18T vector using TA cloning followed by BamHI and XhoI digestion and sequence analysis. The target gene was then subcloned into a highly efficient eukaryotic expression vector pcDNA3.1 (+). The recombinant plasmid was sequenced and identified by restrictive endonuclease digestion, and transfected into HepG2 cells via liposome. The expression of gp120 gene was analyzed by RT-PCR and Western blotting, respectively. RESULTS: Restriction endonuclease digestion and sequence analysis verified successful construction of the recombinant vector pcDNA3.1(+)/gp120. The target fragment gp120 was identical with U26942 in Genbank, and the expression of gp120 gene was detected in the lysate of the transfected HepG2 cells by RT-PCR and Western blotting. CONCLUSION: The eukaryotic expression plasmid for gp120 has been constructed successfully, which is capable of stable expression in HepG2 cells.


Assuntos
Células Eucarióticas/metabolismo , Proteína gp120 do Envelope de HIV/genética , HIV-1/genética , Plasmídeos/genética , Vacinas contra a AIDS/biossíntese , Vacinas contra a AIDS/genética , Sequência de Bases , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Clonagem Molecular , Expressão Gênica , Proteína gp120 do Envelope de HIV/biossíntese , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Dados de Sequência Molecular , Transfecção , Vacinas de DNA/biossíntese , Vacinas de DNA/genética
9.
Sheng Wu Gong Cheng Xue Bao ; 21(4): 638-41, 2005 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-16176106

RESUMO

The viral spike protein is the main surface antigen of the coronavirus, and it could be useful in the research of clinical diagnosis, SARS vaccine and the structure biology.According to the analysis of the main antigen of the SARS spike protein, 5 fragments of the whole spike gene were cloned, and ligated to the vector pNMT1. Through electroporation transformantion to TCP1, the recombinant S. pombe strains capable of expressing the 5 fragments were constructed. SDS-PAGE or Western blot analysis of the induced expression products demonstrated that the 5 recombinant proteins were expressed in the fission yeast respectively.


Assuntos
Glicoproteínas de Membrana/biossíntese , Proteínas Recombinantes/biossíntese , Schizosaccharomyces/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Proteínas do Envelope Viral/biossíntese , Clonagem Molecular , Eletroporação , Glicoproteínas de Membrana/genética , Proteínas Recombinantes/genética , Schizosaccharomyces/genética , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/genética
10.
Sheng Wu Gong Cheng Xue Bao ; 19(5): 566-71, 2003 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-15969085

RESUMO

The Cry1Ab differs most significantly from the other related ICPs by its absence of a carboxyl terminus of 28 amino acids including four cysteines; consequently it is less stable. We report that the helper protein P20 plays a role in the expression and crystallization of Cry1Ab. Three Cry1Ab expression plasmids pT1B, pP1B, and pDP1B, were constructed based on the shuttle vector pHT3101. The vector pT1B does not contain the p20 gene, pP1B carries p20, and pDP1B contains p20 with cry1A(c) promoter. Transformants were obtained by electroporating the plasmids into Bacillus thuringiensis acrystalliferous mutant CryB. Western blot demonstrated that crylAb was expressed as a 130 kD protein in all the transformants, and some of the protein was partially degraded into a 60 kD peptide. Quantitative protein analysis indicated that the amount of the 130 kD protein varied in the transformants and was in the ratio of 1:1.4:1.5 for PT1B, pP1B and pDP1B respectively. For the 60 kD proteins, the ratio was 1:1.1:1.6. Microscopic examination revealed that the size of the typical pyramidal crystals in the three transformants was in the order of T1B < P1B < DP1B. Bioassay showed that T1B, P1B and DP1B were all toxic to the larvae of Helicoverpa armigera with similar LC50. This study suggested that P20 plays a role in the expression and crystallization of Cry1Ab.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Bioensaio/métodos , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/ultraestrutura , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Western Blotting , Eletroporação , Endotoxinas/genética , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Microscopia Eletrônica de Transmissão , Mariposas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA