Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256755

RESUMO

Shading is an effective agronomic technique to protect tea plants from intense sunlight. However, there are currently very few studies on more effective shading methods to improve the quality of summer tea. In this study, 'Longjing43' plants were grown under four different shading treatments for 14 days, with no shading as the control. Among the four shading treatments, double-layer-net shadings had the most positive impact on the tea quality, resulting in higher levels of amino acids but lower levels of tea polyphenols. Additionally, double-layer-net shadings provided more suitable microenvironments for tea plants. The tea leaves in T4 (double nets 50 cm above the plant canopy) contained 16.13 mg∙g-1 of umami and sweet amino acids, which was significantly higher than in other treatments. T4 had the lowest air temperature and the most suitable and stable soil water content. Interestingly, the ratio of red light to far-red light in T4 was only 1.65, much lower than other treatments, which warrants further study. In conclusion, the microenvironment induced by shading can greatly affect the tea quality, and double-layer-net shading is better for improving the quality of summer tea.

2.
Sci Total Environ ; 856(Pt 2): 159231, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36216053

RESUMO

Soil organic carbon (SOC) is an important C pool of the global ecosystem and is affected by various agricultural practices including fertilization. Excessive nitrogen (N) application is an important field management measure in tea plantation systems. However, the mechanism underlying the impact of N fertilization on SOC, especially the microscopic mechanism remain unclear. The present study explored the effects of N fertilization on C-cycling genes, SOC-degrading enzymes and microbes expressing these enzymes by using a metagenomic approach in a tea plantation under long-term fertilization with different N rates. Results showed that N application significantly changed the abundance of C-cycling genes, SOC-degrading enzymes, especially those associated with labile and recalcitrant C degradation. In addition, the beta-glucosidase and chitinase-expressing microbial communities showed a significant difference under different N rates. At the phylum level, microbial taxa involved in C degradation were highly similar and abundant, while at the genus level, only specific taxa performed labile and recalcitrant C degradation; these SOC-degrading microbes were significantly enriched under N application. Redundancy analysis (RDA) revealed that the soil and pruned litter properties greatly influenced the SOC-degrading communities; pH and DOC of the soil and biomass and total polyphenol (TP) of the pruned litter exerted significant effects. Additionally, the random forest (RF) algorithm revealed that soil pH and dominant taxa efficiently predicted the beta-glucosidase abundance, while soil pH and DOC, pruned litter TP, and the highly abundant microbial taxa efficiently predicted chitinase abundance. Our study indicated that long-term N fertilization exerted a significant positive effect on SOC-degrading enzymes and microbes expressing these enzymes, resulting in potential impact on soil C storage in a perennial tea plantation ecosystem.


Assuntos
Camellia sinensis , Celulases , Quitinases , Microbiota , Solo/química , Carbono/análise , Camellia sinensis/metabolismo , Microbiologia do Solo , Metagenômica , Nitrogênio/análise , Chá , Fertilização
3.
Environ Res ; 216(Pt 3): 114679, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326541

RESUMO

The response of soil denitrification to nitrogen (N) addition in the acidic and perennial agriculture systems and its underlying mechanisms remain poorly understood. Therefore, a long-term (12 years) field trial was conducted to explore the effects of different N application rates on the soil denitrification potential (DP), functional genes, and denitrifying microbial communities of a tea plantation. The study found that N application to the soil significantly increased the DP and the absolute abundance of denitrifying genes, such as narG, nirK, norB, and nosZ. The diversity of denitrifying communities (genus level) significantly decreased with increasing N rates. Moreover, the denitrifying communities composition significantly differed among the soils with different rates of N fertilization. Further variance partitioning analysis (VPA) revealed that the soil (39.04%) and pruned litter (32.53%) properties largely contributed to the variation in the denitrifying communities. Dissolved organic carbon (DOC) and soil pH, pruned litter's total crude fiber (TCF) content and total polyphenols to total N ratio (TP/TN), and narG and nirK abundance significantly (VIP >1.0) influenced the DP. Finally, partial least squares path modeling (PLS-PM) revealed that N addition indirectly affected the DP by changing specific soil and pruned litter properties and functional gene abundance. Thus, the findings suggest that tea plantation is a major source of N2O emissions that significantly enhance under N application and provide theoretical support for N fertilizer management in an acidic tea plantation system.


Assuntos
Microbiologia do Solo , Solo , Solo/química , Nitrogênio , Desnitrificação , Chá
4.
Front Plant Sci ; 12: 753086, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721481

RESUMO

Over 30% of the Chinese tea plantation is supplied with excess fertilizer, especially nitrogen (N) fertilizer. Whether or not foliar N application on tea plants at the dormancy stage could improve the quality of spring tea and be a complementary strategy to reduce soil fertilization level remains unclear. In this study, the effects of foliar N application on tea plants were investigated by testing the types of fertilizers and their application times, and by applying foliar N under a reduced soil fertilization level using field and 15N-labeling pot experiments. Results showed that the foliar N application of amino acid liquid fertilizer two times at the winter dormancy stage was enough to significantly increase the N concentration of the mature leaves and improved the quality of spring tea. The foliar application of 2% urea or liquid amino acid fertilizer two times at the winter dormancy stage and two times at the spring dormancy stage showed the best performance in tea plants among the other foliar N fertilization methods, as it reduced the soil fertilization levels in tea plantations without decreasing the total N concentration of the mature leaves or deteriorating the quality of spring tea. Therefore, foliar N application on tea plants at its dormancy stage increases the N concentration of the mature leaves, improves the quality and yield of spring tea, and could be a complementary strategy to reduce soil fertilization levels.

5.
Food Res Int ; 121: 697-704, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31108798

RESUMO

Non-fermented teas, which are widely consumed in China, Japan, Korea, and elsewhere, have refreshing flavors and valuable health benefits. Various types of non-fermented teas look and taste similar and have no obvious differences in appearance, making their classification challenging. To date, there are very few reports about characterization and discrimination of different types of non-fermented teas. To characterize non-fermented teas and build a standard model for their classification based on their chemical composition, we employed multi-platform-based metabolomics to analyze primary and secondary metabolites in three main categories of non-fermented teas (green, yellow, and white), using 96 samples collected from China. Five hundred and ninety unique tea metabolites were identified and quantified in these three types of teas. Moreover, a partial least squares discriminant analysis (PLS-DA) model was established based on metabolomics data, in order to classify non-fermented teas into these three classes. Furthermore, our results speculate that the health benefits (e.g., antioxidant content) of these three types of non-fermented tea differ primarily because of variation in their metabolic components (e.g., ascorbate, vitexin).


Assuntos
Metabolômica , Chá/química , Chá/classificação , Aminoácidos/análise , Antioxidantes/análise , Cafeína/análise , China , Análise Discriminante , Fermentação , Flavonoides/análise , Manipulação de Alimentos , Japão , Análise dos Mínimos Quadrados , Análise Multivariada , Extratos Vegetais/análise , Polifenóis/análise , Análise de Componente Principal , República da Coreia , Açúcares/análise , Paladar
6.
Angew Chem Int Ed Engl ; 58(8): 2236-2240, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30548959

RESUMO

Circulating tumor cell (CTC)-enrichment by using aptamers has a number of advantages, but the issue of compromised binding affinities and stabilities in real samples hinders its wide applications. Inspired by the high efficiency of the prey mechanism of the octopus, we engineered a deterministic lateral displacement (DLD)-patterned microfluidic chip modified with multivalent aptamer-functionalized nanospheres (AP-Octopus-Chip) to enhance capture efficiency. The multivalent aptamer-antigen binding efficiency improves 100-fold and the capture efficiency is enhanced more than 300 % compared with a monovalent aptamer-modified chip. Moreover, the captured cancer cells can be released through a thiol exchange reaction with up to 80 % efficiency and 96 % viability, which is fully compatible with downstream mutation detection and CTC culture. Using the chip, we were able to find CTCs in all cancer samples analyzed.


Assuntos
Aptâmeros de Nucleotídeos/química , Engenharia Celular , Nanopartículas/química , Células Neoplásicas Circulantes/patologia , Humanos , Células K562 , Células Tumorais Cultivadas
7.
Analyst ; 143(6): 1294-1304, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29497717

RESUMO

Gas generation-based measurement is an attractive alternative approach for POC (Point-of-care) testing, which relies on the amount of generated gas to detect the corresponding target concentrations. In gas generation-based POC testing, the integration of a target recognition component and a catalyzed gas-generating reaction initiated by the target introduction can lead to greatly amplified signals, which can be highly sensitive measured via distance readout or simple hand-held devices. More importantly, numerous gas-generating reactions are environment-friendly since their products such as oxygen and nitrogen are nontoxic and odourless, which makes gas generation-based POC testing safe and secure for inexperienced staff. Researchers have demonstrated that gas generation-based measurements enable the rapid and highly sensitive POC detection of a variety of analytes. In this review, we focus on the recent developments in gas generation-based POC testing systems. The common types of gas-generating reactions are first listed and the translation of gas signals to different signal readouts for POC testing are then summarized, including distance readouts and hand-held devices. Moreover, we introduce gas bubbles as actuators to power microfluidic devices. We finally provide the applications and future perspective of gas generation-based POC testing systems.


Assuntos
Técnicas Biossensoriais , Gases/química , Testes Imediatos , Amônia/química , Humanos , Concentração de Íons de Hidrogênio , Dispositivos Lab-On-A-Chip , Nitrogênio/química , Oxigênio/química
8.
Chem Sci ; 8(3): 1736-1751, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451298

RESUMO

Up to 90% of cancer-related deaths are caused by metastatic cancer. Circulating tumor cells (CTCs), a type of cancer cell that spreads through the blood after detaching from a solid tumor, are essential for the establishment of distant metastasis for a given cancer. As a new type of liquid biopsy, analysis of CTCs offers the possibility to avoid invasive tissue biopsy procedures with practical implications for diagnostics. The fundamental challenges of analyzing and profiling CTCs are the extremely low abundances of CTCs in the blood and the intrinsic heterogeneity of CTCs. Various technologies have been proposed for the enrichment and single-cell analysis of CTCs. This review aims to provide in-depth insights into CTC analysis, including various techniques for isolation of CTCs with capture methods based on physical and biochemical principles, and single-cell analysis of CTCs at the genomic, proteomic and phenotypic level, as well as current developmental trends and promising research directions.

9.
Anal Chem ; 88(16): 8294-301, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27454185

RESUMO

Binding affinity characterization is of great importance for aptamer screening because the dissociation constant (Kd) value is a key parameter for evaluating molecular interaction. However, conventional methods often require sophisticated equipment and time-consuming processing. Here, we present a portable device, Afi-Chip, as an equipment-free, rapid, low-cost, and universal platform for evaluation of the aptamer affinity. The Afi-Chip displays a distance readout based on the reaction of an enzyme catalyzing the decomposition of H2O2 for gas generation to push the movement of ink bar. Taking advantage of translating the recognition signal to distance signal and realizing the regents mixing and quantitative readout on the chip, we successfully monitored the aptamer evolution process and characterized binding affinity of aptamers against multiple types of targets, including small molecule glucose, cancer biomarker protein EpCAM, and tumor cell SW620. We also applied the Afi-Chip for rapid characterization of the affinity between anti-HCG and HCG to demonstrate the generality for the molecular interaction study. All of the Kd values obtained are comparable to those reported in the literature or obtained by sophisticated instruments such as a flow cytometer. The Afi-Chip offers a new approach for equipment-free investigation of molecular interactions, such as aptamer identification, ligand selection monitoring, and drug screening.

10.
Lab Chip ; 16(16): 3097-104, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27302553

RESUMO

Aflatoxin B1 (AFB1), as the secondary metabolite of molds, is the most predominant and toxic mycotoxin that seriously threatens the health of humans and animals. In this work, an AFB1-responsive hydrogel was synthesized for highly sensitive and portable detection of AFB1. The AFB1-responsive hydrogel was prepared using an AFB1 aptamer and its two short complementary DNA strands as cross-linkers. For visual detection of AFB1, the hydrogel is preloaded with gold nanoparticles (AuNPs). Upon introduction of AFB1, the AFB1 aptamer binds with AFB1, leading to the disruption of the hydrogel and release of the AuNPs with a distinct color change of the supernatant from colorless to red. In order to lower the detection limit and extend the method to quantitative analysis, a distance-readout volumetric bar chart chip (V-chip) was combined with an AFB1-responsive hydrogel preloaded with platinum nanoparticles (PtNPs). In the presence of AFB1, the hydrogel collapses and releases PtNPs which can catalyze the decomposition of H2O2 to generate O2. The increasing gas pressure moves a red ink bar in the V-chip and provides a quantitative relationship between the distance and the concentration of AFB1. The method was applied for detection of AFB1 in beer, with a detection limit of 1.77 nM (0.55 ppb) where an immunoaffinity column (IAC) of AFB1 was used to cleanup and pre-concentrate the sample, which satisfies the testing requirement of 2.0 ppb set by the European Union. The combination of an AFB1-responsive hydrogel with a distance-based readout V-chip offers a user-friendly POCT device, which has great potential for rapid, portable, selective, and quantitative detection of AFB1 in real samples to ensure food safety and avoid subsequent economic losses.


Assuntos
Aflatoxina B1/análise , Carcinógenos Ambientais/análise , Hidrogéis/química , Dispositivos Lab-On-A-Chip , Modelos Químicos , Aptâmeros de Nucleotídeos/química , DNA Complementar/química , Estudos de Viabilidade , Inspeção de Alimentos/instrumentação , Ouro/química , Ácidos Nucleicos Imobilizados/química , Limite de Detecção , Nanopartículas Metálicas/química , Platina/química
11.
Mol Biosyst ; 11(7): 1832-40, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25925870

RESUMO

Cell culture metabolomics has demonstrated significant advantages in cancer research. However, its applications have been impeded by some influencing factors such as culture media, which could significantly affect cellular metabolic profiles and lead to inaccuracy and unreliability of comparative metabolomic analysis of cells. To evaluate the effects of different culture media on cellular metabolic profiling, we performed NMR-based metabolomic analysis of the human gastric cancer cell line SGC7901 cultured in both RPMI1640 and DMEM. We found that SGC7901 cultured in the two media exhibited distinct metabolic profiles with obviously different levels of discrepant metabolites, even though they showed almost the same cellular morphology and proliferation rates. When SGC7901 originally cultured in RPMI1640 was gradually acclimated in DMEM, both the metabolic profiles and most of the discrepant metabolite levels gradually converged toward those of the cells originally cultured in DMEM without significantly altered cell proliferation rates. However, several metabolite levels did not show the converging trends. Our results indicate that the effects of culture media on metabolic profiling must be carefully taken into account for comparative metabolomic analysis of cell lines. This work may be of benefit to the development of cell culture metabolomics.


Assuntos
Metaboloma , Neoplasias Gástricas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Forma Celular , Meios de Cultura , Humanos
12.
J Integr Plant Biol ; 57(10): 830-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25404058

RESUMO

Glucose (Glu) is involved in not only plant physiological and developmental events but also plant responses to abiotic stresses. Here, we found that the exogenous Glu improved root and shoot growth, reduced shoot cadmium (Cd) concentration, and rescued Cd-induced chlorosis in Arabidopsis thaliana (Columbia ecotype, Col-0) under Cd stressed conditions. Glucose increased Cd retained in the roots, thus reducing its translocation from root to shoot significantly. The most Cd retained in the roots was found in the hemicellulose 1. Glucose combined with Cd (Glu + Cd) treatment did not affect the content of pectin and its binding capacity of Cd while it increased the content of hemicelluloses 1 and the amount of Cd retained in it significantly. Furthermore, Leadmium Green staining indicated that more Cd was compartmented into vacuoles in Glu + Cd treatment compared with Cd treatment alone, which was in accordance with the significant upregulation of the expression of tonoplast-localized metal transporter genes, suggesting that compartmentation of Cd into vacuoles also contributes to the Glu-alleviated Cd toxicity. Taken together, we demonstrated that Glu-alleviated Cd toxicity is mediated through increasing Cd fixation in the root cell wall and sequestration into the vacuoles.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Parede Celular/efeitos dos fármacos , Glucose/farmacologia , Vacúolos/metabolismo , Parede Celular/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Vacúolos/efeitos dos fármacos
13.
PLoS One ; 9(11): e112572, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25390340

RESUMO

To investigate the effect of light intensity and temperature on the biosynthesis and accumulation of quality-related metabolites, field grown tea plants were shaded by Black Net and Nano-insulating Film (with additional 2-4°C cooling effect) with un-shaded plants as a control. Young shoots were subjected to UPLC-Q-TOF MS followed by multivariate statistical analysis. Most flavonoid metabolites (mainly flavan-3-ols, flavonols and their glycosides) decreased significantly in the shading treatments, while the contents of chlorophyll, ß-carotene, neoxanthin and free amino acids, caffeine, benzoic acid derivatives and phenylpropanoids increased. Comparison between two shading treatments indicated that the lower temperature under Nano shading decreased flavonols and their glycosides but increased accumulation of flavan-3-ols and proanthocyanidins. The comparison also showed a greater effect of temperature on galloylation of catechins than light intensity. Taken together, there might be competition for substrates between the up- and down-stream branches of the phenylpropanoid/flavonoid pathway, which was influenced by light intensity and temperature.


Assuntos
Camellia sinensis/metabolismo , Flavonoides/análise , Luz , Polifenóis/análise , Temperatura , Camellia sinensis/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Chá
14.
J Zhejiang Univ Sci B ; 9(3): 265-70, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18357630

RESUMO

It is important to research the rules about accumulation and distribution of arsenic and cadmium by tea plants, which will give us some scientific ideas about how to control the contents of arsenic and cadmium in tea. In this study, by field investigation and pot trial, we found that mobility of arsenic and cadmium in tea plants was low. Most arsenic and cadmium absorbed were fixed in feeding roots and only small amount was transported to the above-ground parts. Distribution of arsenic and cadmium, based on their concentrations of unit dry matter, in tea plants grown on un-contaminated soil was in the order: feeding roots>stems approximately main roots>old leaves>young leaves. When tea plants were grown on polluted soils simulated by adding salts of these two metals, feeding roots possibly acted as a buffer and defense, and arsenic and cadmium were transported less to the above-ground parts. The concentration of cadmium in soil significantly and negatively correlated with chlorophyll content, photosynthetic rate, transpiration rate and biomass production of tea plants.


Assuntos
Arsênio/metabolismo , Cádmio/metabolismo , Camellia sinensis/metabolismo , Chá/metabolismo , Biomassa , Clorofila/metabolismo , Fotoquímica , Brotos de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA