Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 291(13): 2792-2810, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38465368

RESUMO

LIM homeodomain transcription factor 1-alpha (LMX1a) is a neuronal lineage-specific transcription activator that plays an essential role during the development of midbrain dopaminergic (mDA) neurons. LMX1a induces the expression of multiple key genes, which ultimately determine the morphology, physiology, and functional identity of mDA neurons. This function of LMX1a is dependent on its homeobox domain. Here, we determined the structures of the LMX1a homeobox domain in complex with the promoter sequences of the Wnt family member 1 (WNT1) or paired like homeodomain 3 (Pitx3) gene, respectively. The complex structures revealed that the LMX1a homeobox domain employed its α3 helix and an N-terminal loop to achieve specific target recognition. The N-terminal loop (loop1) interacted with the minor groove of the double-stranded DNA (dsDNA), whereas the third α-helix (α3) was tightly packed into the major groove of the dsDNA. Structure-based mutations in the α3 helix of the homeobox domain significantly reduced the binding affinity of LMX1a to dsDNA. Moreover, we identified a nonsyndromic hearing loss (NSHL)-related mutation, R199, which yielded a more flexible loop and disturbed the recognition in the minor groove of dsDNA, consistent with the molecular dynamics (MD) simulations. Furthermore, overexpression of Lmx1a promoted the differentiation of SH-SY5Y cells and upregulated the transcription of WNT1 and PITX3 genes. Hence, our work provides a detailed elucidation of the specific recognition between the LMX1a homeobox domain and its specific dsDNA targets, which represents valuable information for future investigations of the functional pathways that are controlled by LMX1a during mDA neuron development.


Assuntos
Proteínas com Homeodomínio LIM , Regiões Promotoras Genéticas , Fatores de Transcrição , Proteína Wnt1 , Humanos , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Ligação Proteica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/química , DNA/metabolismo , DNA/genética , DNA/química , Domínios Proteicos , Modelos Moleculares , Mutação , Cristalografia por Raios X , Sítios de Ligação , Motivos de Nucleotídeos
2.
Commun Biol ; 7(1): 158, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326406

RESUMO

Immunotherapy, including immune checkpoint inhibitors and adoptive cell transfer, has obtained great progress, but their efficiencies vary among patients due to the genetic and epigenetic differences. Human MEX3B (hMEX3B) protein is an RNA-binding protein that contains two KH domains at the N-terminus and a RING domain at its C-terminus, which has the activity of E3 ubiquitin ligase and is essential for RNA degradation. Current evidence suggests that hMEX3B is involved in many important biological processes, including tumor immune evasion and HLA-A regulation, but the sequence of substrate RNA recognized by hMEX3B and the functional molecular mechanisms are unclear. Here, we first screened the optimized hMEX3B binding sequence on the HLA-A mRNA and reported that the two tandem KH domains can bind with their substrate one hundred times more than the individual KH domains. We systematically investigated the binding characteristics between the two KH domains and their RNA substrates by nuclear magnetic resonance (NMR). Based on this information and the small-angle X-ray scattering (SAXS) data, we used molecular dynamics simulations to obtain structural models of KH domains in complex with their corresponding RNAs. By analyzing the models, we noticed that on the KH domains' variable loops, there were two pairs of threonines and arginines that can disrupt the recognition of the RNA completely, and this influence had also been verified both in vitro and in vivo. Finally, we presented a functional model of the hMEX3B protein, which indicated that hMEX3B regulated the degradation of its substrate mRNAs in many biological processes. Taken together, our research illustrated how the hMEX3B protein played a key role in translation inhibition during the immune response to tumor cells and provided an idea and a lead for the study of the molecular mechanism and function of other MEX3 family proteins.


Assuntos
Proteínas de Ligação a RNA , Evasão Tumoral , Humanos , RNA Mensageiro/metabolismo , Evasão Tumoral/genética , Espalhamento a Baixo Ângulo , Difração de Raios X , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Antígenos HLA-A/metabolismo
3.
FEBS J ; 290(15): 3896-3909, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37013936

RESUMO

ZBTB7A, a transcription factor containing a tandem array of four Cys2-His2 zinc fingers (ZFs), is vital for multiple physiological events through directional binding to different genomic loci. Our previously determined crystal structure of ZBTB7A in complex with a GCCCCTTCCCC sequence revealed that all four ZFs (ZF1-4) are involved in binding to γ-globin -200 gene element to repress fetal haemoglobin expression. Recently, it has been reported that ZBTB7A drives primed-to-naïve transition (PNT) of pluripotent stem cells through binding to a 12-bp consensus sequence ([AAGGACCCAGAT], referred to as PNT-associated sequence). Here, we report a crystal structure of ZBTB7A ZF1-3 in complex with the PNT-associated sequence. The structure shows that ZF1 and ZF2 primarily contribute to recognizing the GACCC core sequence mimicking the half part (GCCCC) of γ-globin -200 gene element via specific hydrogen bonding and van der Waals contacts. The mutations of key residues in ZF1-2 remarkably reduce their binding affinities for the PNT-associated sequence in vitro and cannot restore epiblast stem cells to the naïve pluripotent state in vivo. Collectively, our studies demonstrate that ZBTB7A mainly employs its ZF1-2 to recognize the PNT-associated sequence but recognizes γ-globin -200 gene element via ZF1-4, providing insights into the molecular mechanism for the diversity of ZBTB7A's genomic localization.


Assuntos
Proteínas de Ligação a DNA , Células-Tronco Pluripotentes , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/metabolismo , gama-Globinas/genética , Linhagem Celular Tumoral , Sequência de Aminoácidos , Dedos de Zinco/genética , Células-Tronco Pluripotentes/metabolismo
4.
STAR Protoc ; 3(3): 101598, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35928006

RESUMO

Here, we describe protocols to interrogate the binding of the zinc fingers of the transcription factor ZBTB7A to the fetal γ-globin (HBG) promoter. We detail the steps for performing electrophoretic mobility shift assays (EMSAs), X-ray crystallography, and isothermal titration calorimetry (ITC) to explore this interaction. These techniques could readily be applied to the structural studies of other zinc finger transcription factors and cognate DNA sequences. For complete details on the use and execution of this protocol, please refer to Yang et al. (2021).


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Linhagem Celular Tumoral , DNA/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Dedos de Zinco
5.
Cell Rep ; 36(13): 109759, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34592153

RESUMO

Elevated levels of fetal globin protect against ß-hemoglobinopathies, such as sickle cell disease and ß-thalassemia. Two zinc-finger (ZF) repressors, BCL11A and ZBTB7A/LRF, bind directly to the fetal globin promoter elements positioned at -115 and -200, respectively. Here, we describe X-ray structures of the ZBTB7A DNA-binding domain, consisting of four adjacent ZFs, in complex with the -200 sequence element, which contains two copies of four consecutive C:G base pairs. ZF1 and ZF2 recognize the 5' C:G quadruple, and ZF4 contacts the 3' C:G quadruple. Natural non-coding DNA mutations associated with hereditary persistence of fetal hemoglobin (HPFH) impair ZBTB7A DNA binding, with the most severe disruptions resulting from mutations in the base pairs recognized by ZF1 and ZF2. Our results firmly establish ZBTB7A/LRF as a key molecular regulator of fetal globin expression and inform genome-editing strategies that inhibit repressor binding and boost fetal globin expression to treat hemoglobinopathies.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Globinas/genética , Globinas/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Hemoglobina Fetal/genética , Edição de Genes/métodos , Humanos , Fatores de Transcrição/genética , Dedos de Zinco/fisiologia , Talassemia beta/genética
6.
Biochem Biophys Res Commun ; 549: 135-142, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33676181

RESUMO

A protein-RNA complex containing the RNA helicase CGH-1 and a germline specific RNA-binding protein CAR-1 is involved in various aspects of function in C. elegans. However, the structural basis for the assembly of this protein complex remains unclear. Here, we elucidate the molecular basis of the recognition of CGH-1 by CAR-1. Additionally, we found that the ATPase activity of CGH-1 is stimulated by NTL-1a MIF4G domain in vitro. Furthermore, we determined the structures of the two RecA-like domains of CGH-1 by X-ray crystallography at resolutions of 1.85 and 2.40 Å, respectively. Structural and biochemical approaches revealed a bipartite interface between CGH-1 RecA2 and the FDF-TFG motif of CAR-1. NMR and structure-based mutations in CGH-1 RecA2 or CAR-1 attenuated or disrupted CGH-1 binding to CAR-1, assessed by ITC and GST-pulldown in vitro. These findings provide insights into a conserved mechanism in the recognition of CGH-1 by CAR-1. Together, our data provide the missing physical links in understanding the assembly and function of CGH-1 and CAR-1 in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , RNA Nucleotidiltransferases/química , RNA Nucleotidiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Aminoácidos/química , Animais , Sequência Conservada , Cristalografia por Raios X , Isótopos de Nitrogênio , Domínios Proteicos , Espectroscopia de Prótons por Ressonância Magnética
7.
J Phys Chem Lett ; 11(18): 7932-7938, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32885980

RESUMO

The first Tudor domain (Tudor1) of PHF20L1 recognizes (non)histone methylation to play versatile roles. However, the underlying ligand-recognition mechanism remains unknown as a closed state revealed in the free-form structure. NMR relaxation dispersion and molecular dynamics simulations suggest a pre-existing low-population conformation with a remarkable rearrangement of aromatic cage residues of PHF20L1 Tudor1. Such an open-form conformation is utilized to recognize lysine 142 methylated DNMT1, a cosolvent, and an NMR fragment screening hit, as revealed by the complex crystal structures. Intriguingly, the ligand binding capacity was enhanced by mutation that tunes up the open-state population only. The recognition of DNMT1 by PHF20L1 was further validated in cancer cells. This conformational selection mechanism will enable the discovery of small molecule inhibitors against the seemingly "undruggable" PHF20L1 Tudor1.


Assuntos
Proteínas Cromossômicas não Histona/química , Células HeLa , Humanos , Ligantes , Simulação de Dinâmica Molecular , Conformação Proteica
8.
Int J Mol Sci ; 20(13)2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31262091

RESUMO

The TDP-43 is originally a nuclear protein but translocates to the cytoplasm in the pathological condition. TDP-43, as an RNA-binding protein, consists of two RNA Recognition Motifs (RRM1 and RRM2). RRMs are known to involve both protein-nucleotide and protein-protein interactions and mediate the formation of stress granules. Thus, they assist the entire TDP-43 protein with participating in neurodegenerative and cancer diseases. Consequently, they are potential therapeutic targets. Protein-observed and ligand-observed nuclear magnetic resonance (NMR) spectroscopy were used to uncover the small molecule inhibitors against the tandem RRM of TDP-43. We identified three hits weakly binding the tandem RRMs using the ligand-observed NMR fragment-based screening. The binding topology of these hits is then depicted by chemical shift perturbations (CSP) of the 15N-labeled tandem RRM and RRM2, respectively, and modeled by the CSP-guided High Ambiguity Driven biomolecular DOCKing (HADDOCK). These hits mainly bind to the RRM2 domain, which suggests the druggability of the RRM2 domain of TDP-43. These hits also facilitate further studies regarding the hit-to-lead evolution against the TDP-43 RRM domain.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Simulação de Acoplamento Molecular , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química
9.
Nucleic Acids Res ; 47(14): 7648-7665, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31251801

RESUMO

Mitochondria are essential molecular machinery for the maintenance of cellular energy supply by the oxidative phosphorylation system (OXPHOS). Mitochondrial transcription factor B1 (TFB1M) is a dimethyltransferase that maintains mitochondrial homeostasis by catalyzing dimethylation of two adjacent adenines located in helix45 (h45) of 12S rRNA. This m62A modification is indispensable for the assembly and maturation of human mitochondrial ribosomes. However, both the mechanism of TFB1M catalysis and the precise function of TFB1M in mitochondrial homeostasis are unknown. Here we report the crystal structures of a ternary complex of human (hs) TFB1M-h45-S-adenosyl-methionine and a binary complex hsTFB1M-h45. The structures revealed a distinct mode of hsTFB1M interaction with its rRNA substrate and with the initial enzymatic state involved in m62A modification. The suppression of hsTFB1M protein level or the overexpression of inactive hsTFB1M mutants resulted in decreased ATP production and reduced expression of components of the mitochondrial OXPHOS without affecting transcription of the corresponding genes and their localization to the mitochondria. Therefore, hsTFB1M regulated the translation of mitochondrial genes rather than their transcription via m62A modification in h45.


Assuntos
Proteínas de Ligação a DNA/genética , Genes Mitocondriais/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Biossíntese de Proteínas , RNA Ribossômico/genética , Fatores de Transcrição/genética , Sequência de Bases , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Homeostase/genética , Humanos , Metilação , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , Mutação , Fosforilação Oxidativa , Ligação Proteica , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
10.
Protein Sci ; 27(9): 1661-1669, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30095198

RESUMO

MEX-3C, a novel RNA binding E3 ubiquitin ligases, contains two N-terminal heterogeneous nuclear ribonucleoprotein K homology (KH) domains and C-terminal Ring finger domain. Recent evidence has suggested that human MEX-3C has a strong bondage with carcinogenesis and the MEX-3C-mediated ubiquitination of RIG-I is essential for the antiviral innate immune response. Moreover, the Ring finger domain of MEX-3C could regulate the degradation of HLA-A2 (an MHC-I allotype) mRNA with a novel mechanism. However, the structural basis for the ubiquitination catalyzed by hMEX-3C Ring finger domain remains evasive. In this study, we solved the crystal structure of dimeric Ring finger domain of hMEX-3C and compared it with the complex structure of MDM2/MDMX-UbcH5b-Ub. Our ubiquitination assay demonstrated that the Ring finger domain of hMEX-3C acts as a ubiquitin E3 ligase in vitro, cooperating with specific E2 to mediate ubiquitination. Then, we identified several key residues in Ring finger domain of hMEX-3C possibly involved in the interaction with E2-Ub conjugate and analyzed the E3 ligase activities of wild type and mutants at key sites. Additionally, zinc chelation experiments indicated that the intact structural stability is essential for the self-ubiquitination activity of the Ring finger domain of hMEX-3C. Taken together, our studies provided new insight into the mechanism of the Ring finger domain of hMEX-3C that may play an important role in eliciting antiviral immune responses and therapeutic interventions.


Assuntos
Proteínas de Ligação a RNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Modelos Moleculares , Domínios RING Finger , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Ubiquitina-Proteína Ligases/química , Ubiquitinação , Zinco/química , Zinco/metabolismo
11.
Biochem J ; 475(16): 2667-2679, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30045876

RESUMO

The nucleosome remodeling and histone deacetylase (NuRD) complex is an essential multi-subunit protein complex that regulates higher-order chromatin structure. Cancers that use the alternative lengthening of telomere (ALT) pathway of telomere maintenance recruit NuRD to their telomeres. This interaction is mediated by the N-terminal domain of the zinc-finger protein ZNF827. NuRD-ZNF827 plays a vital role in the ALT pathway by creating a molecular platform for recombination-mediated repair. Disruption of NuRD binding results in loss of ALT cell viability. Here, we present the crystal structure of the NuRD subunit RBBP4 bound to the N-terminal 14 amino acids of ZNF827. RBBP4 forms a negatively charged channel that binds to ZNF827 through a network of electrostatic interactions. We identify the precise amino acids in RBBP4 required for this interaction and demonstrate that disruption of these residues prevents RBBP4 binding to both ZNF827 and telomeres, but is insufficient to decrease ALT activity. These data provide insights into the structural and functional determinants of NuRD activity at ALT telomeres.


Assuntos
Proteínas de Ligação a DNA , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Proteína 4 de Ligação ao Retinoblastoma , Linhagem Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/química , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/química , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Relação Estrutura-Atividade , Telômero/química , Telômero/genética , Telômero/metabolismo
13.
Nat Commun ; 8(1): 1506, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29138396

RESUMO

Two hallmarks for cancer cells are the accelerated cell cycle progression as well as the altered metabolism, however, how these changes are coordinated to optimize the growth advantage for cancer cells are still poorly understood. Here we identify that Polo-like kinase 1 (Plk1), a key regulator for cell mitosis, plays a critical role for biosynthesis in cancer cells through activating pentose phosphate pathway (PPP). We find that Plk1 interacts with and directly phosphorylates glucose-6-phosphate dehydrogenase (G6PD). By activating G6PD through promoting the formation of its active dimer, Plk1 increases PPP flux and directs glucose to the synthesis of macromolecules. Importantly, we further demonstrate that Plk1-mediated activation of G6PD is critical for its role to promote cell cycle progression and cancer cell growth. Collectively, these findings establish a critical role for Plk1 in regulating biosynthesis in cancer cells, exemplifying how cell cycle progression and metabolic reprogramming are coordinated for cancer progression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Glucose/metabolismo , Via de Pentose Fosfato , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Feminino , Glucosefosfato Desidrogenase/metabolismo , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Transplante Heterólogo , Quinase 1 Polo-Like
14.
PLoS One ; 12(9): e0185226, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28949991

RESUMO

RlmCD has recently been identified as the S-adenosyl methionine (SAM)-dependent methyltransferase responsible for the formation of m5U at U747 and U1939 of 23S ribosomal RNA in Streptococcus pneumoniae. In this research, we determine the high-resolution crystal structures of apo-form RlmCD and its complex with SAH. Using an in-vitro methyltransferase assay, we reveal the crucial residues for its catalytic functions. Furthermore, structural comparison between RlmCD and its structural homologue RumA, which only catalyzes the m5U1939 in Escherichia coli, implicates that a unique long linker in the central domain of RlmCD is the key factor in determining its substrate selectivity. Its significance in the enzyme activity of RlmCD is further confirmed by in-vitro methyltransferase assay.


Assuntos
Metiltransferases/metabolismo , RNA Ribossômico/metabolismo , Catálise , Especificidade por Substrato
15.
J Biol Chem ; 292(39): 16221-16234, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28808060

RESUMO

MEX-3 is a K-homology (KH) domain-containing RNA-binding protein first identified as a translational repressor in Caenorhabditis elegans, and its four orthologs (MEX-3A-D) in human and mouse were subsequently found to have E3 ubiquitin ligase activity mediated by a RING domain and critical for RNA degradation. Current evidence implicates human MEX-3C in many essential biological processes and suggests a strong connection with immune diseases and carcinogenesis. The highly conserved dual KH domains in MEX-3 proteins enable RNA binding and are essential for the recognition of the 3'-UTR and post-transcriptional regulation of MEX-3 target transcripts. However, the molecular mechanisms of translational repression and the consensus RNA sequence recognized by the MEX-3C KH domain are unknown. Here, using X-ray crystallography and isothermal titration calorimetry, we investigated the RNA-binding activity and selectivity of human MEX-3C dual KH domains. Our high-resolution crystal structures of individual KH domains complexed with a noncanonical U-rich and a GA-rich RNA sequence revealed that the KH1/2 domains of human MEX-3C bound MRE10, a 10-mer RNA (5'-CAGAGUUUAG-3') consisting of an eight-nucleotide MEX-3-recognition element (MRE) motif, with high affinity. Of note, we also identified a consensus RNA motif recognized by human MEX-3C. The potential RNA-binding sites in the 3'-UTR of the human leukocyte antigen serotype (HLA-A2) mRNA were mapped with this RNA-binding motif and further confirmed by fluorescence polarization. The binding motif identified here will provide valuable information for future investigations of the functional pathways controlled by human MEX-3C and for predicting potential mRNAs regulated by this enzyme.


Assuntos
Antígeno HLA-A2/metabolismo , Modelos Moleculares , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Elementos de Resposta , Ubiquitina-Proteína Ligases/metabolismo , Regiões 3' não Traduzidas , Sítios de Ligação , Cristalografia por Raios X , Antígeno HLA-A2/química , Antígeno HLA-A2/genética , Humanos , Ligação de Hidrogênio , Cinética , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Oligorribonucleotídeos/química , Oligorribonucleotídeos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Domínios RING Finger , RNA/química , RNA/metabolismo , RNA Mensageiro/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
16.
Protein Cell ; 8(1): 25-38, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27757847

RESUMO

Mitophagy is an essential intracellular process that eliminates dysfunctional mitochondria and maintains cellular homeostasis. Mitophagy is regulated by the post-translational modification of mitophagy receptors. Fun14 domain-containing protein 1 (FUNDC1) was reported to be a new receptor for hypoxia-induced mitophagy in mammalian cells and interact with microtubule-associated protein light chain 3 beta (LC3B) through its LC3 interaction region (LIR). Moreover, the phosphorylation modification of FUNDC1 affects its binding affinity for LC3B and regulates selective mitophagy. However, the structural basis of this regulation mechanism remains unclear. Here, we present the crystal structure of LC3B in complex with a FUNDC1 LIR peptide phosphorylated at Ser17 (pS17), demonstrating the key residues of LC3B for the specific recognition of the phosphorylated or dephosphorylated FUNDC1. Intriguingly, the side chain of LC3B Lys49 shifts remarkably and forms a hydrogen bond and electrostatic interaction with the phosphate group of FUNDC1 pS17. Alternatively, phosphorylated Tyr18 (pY18) and Ser13 (pS13) in FUNDC1 significantly obstruct their interaction with the hydrophobic pocket and Arg10 of LC3B, respectively. Structural observations are further validated by mutation and isothermal titration calorimetry (ITC) assays. Therefore, our structural and biochemical results reveal a working model for the specific recognition of FUNDC1 by LC3B and imply that the reversible phosphorylation modification of mitophagy receptors may be a switch for selective mitophagy.


Assuntos
Proteínas de Membrana , Proteínas Associadas aos Microtúbulos , Proteínas Mitocondriais , Mitofagia , Cristalografia por Raios X , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Estrutura Quaternária de Proteína
17.
J Biol Chem ; 291(32): 16709-19, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27311713

RESUMO

ARAP3 (Arf-GAP with Rho-GAP domain, ANK repeat, and PH domain-containing protein 3) is unique for its dual specificity GAPs (GTPase-activating protein) activity for Arf6 (ADP-ribosylation factor 6) and RhoA (Ras homolog gene family member A) regulated by phosphatidylinositol 3,4,5-trisphosphate and a small GTPase Rap1-GTP and is involved in regulation of cell shape and adhesion. However, the molecular interface between the ARAP3-RhoGAP domain and RhoA is unknown, as is the substrates specificity of the RhoGAP domain. In this study, we solved the crystal structure of RhoA in complex with the RhoGAP domain of ARAP3. The structure of the complex presented a clear interface between the RhoGAP domain and RhoA. By analyzing the crystal structure and in combination with in vitro GTPase activity assays and isothermal titration calorimetry experiments, we identified the crucial residues affecting RhoGAP activity and substrates specificity among RhoA, Rac1 (Ras-related C3 botulinum toxin substrate 1), and Cdc42 (cell division control protein 42 homolog).


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Ativadoras de GTPase/química , Proteína rhoA de Ligação ao GTP/química , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/química , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cristalografia por Raios X , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Domínios Proteicos , Complexo Shelterina , Relação Estrutura-Atividade , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína rhoA de Ligação ao GTP/genética
18.
Biomol NMR Assign ; 10(1): 1-4, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26286319

RESUMO

The plant homeodomain (PHD) finger 6 (PHF6) is a multidomain protein that comprises four nuclear localization signals and two extended PHD zinc finger domains (ePHD), suggesting that the PHD domains of PHF6 may have different functions compared with other PHD domains. And the PHF6 was first identified as the gene mutated associated with Börjeson-Forssman-Lehmann syndrome, an X-linked mental retardation disorder. The mutant PHF6 is also associated with T cell acute lymphoblastic leukemia and acute myeloid leukemia. But the molecular mechanism between these diseases and PHF6 are still unclear. In addition, the first conserved ePHD (ePHD1) of PHF6 is involved in its nucleolus localization, directly interacts with upstream binding factor (UBF) and suppresses rRNA transcription. Here we show the backbone resonance and side chain assignments of the PHF6-ePHD1 domain from human by heteronuclear multidimensional NMR spectroscopy and its secondary structure as predicted by the TALOS+. These assignments of PHF6-ePHD1 domain throw a light on the further structure determination, dynamics and interaction with UBF.


Assuntos
Proteínas de Transporte/química , Ressonância Magnética Nuclear Biomolecular , Sequência de Aminoácidos , Isótopos de Carbono , Humanos , Hidrogênio , Isótopos de Nitrogênio , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Repressoras , Alinhamento de Sequência
19.
Mol Biosyst ; 11(7): 1867-75, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25877602

RESUMO

Metabolic alterations have been observed in cancer for almost a century. Much attention is now directed toward the mechanisms underlying these changes. Jhdm1b (Fbxl10/Kdm2b), an H3K4/K36 histone demethylase overexpressed in various types of cancer, has been reported to regulate cell proliferation and senescence in HeLa cells. In this work, we used (13)C stable isotope resolved metabolomics to investigate cellular metabolites, including intermediates of glycolysis, the pentose phosphate pathway, and the Krebs cycle. The difference in the concentration of cellular metabolites of wild-type and Jhdm1b knockdown HeLa cells indicates that Jhdm1b is a positive regulator of glycolysis, glutaminolysis, and pyrimidine synthesis in HeLa cells. Double knockdown experiments showed that receptor-interacting serine/threonine-protein kinase 3(RIP3), a protein kinase of the cell, is critical to the metabolic shifts induced by Jhdm1b depletion.


Assuntos
Proteínas F-Box/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proliferação de Células , Ciclo do Ácido Cítrico , Proteínas F-Box/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Glicólise , Células HeLa , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Nucleotídeos/biossíntese , Via de Pentose Fosfato , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
20.
Chem Phys Lipids ; 186: 61-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25595293

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a key player in regulating the process of excytosis, including insulin secretion. Granuphilin, a tandem C2 domain containing protein, mediates the docking of insulin granules onto plasma membrane. The C2A domain plays key roles in this process through interaction with PI(4,5)P2. In this study, we have investigated the molecular recognition mechanism of granuphilin-C2A domain to PI(4,5)P2 head group, and further to PI(4,5)P2-nanodisc by NMR, ITC, MST and SEC methods. Our results demonstrate that PI(4,5)P2 binds to the concave surface of granuphilin-C2A domain. The key residues involved in the binding were validated by mutation analysis.


Assuntos
Proteínas de Transporte Vesicular/química , Sequência de Aminoácidos , Humanos , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fosfatos de Fosfatidilinositol/metabolismo , Estrutura Terciária de Proteína , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA