Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 13(1): 2353302, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38753462

RESUMO

Animal models of COVID-19 facilitate the development of vaccines and antivirals against SARS-CoV-2. The efficacy of antivirals or vaccines may differ in different animal models with varied degrees of disease. Here, we introduce a mouse model expressing human angiotensin-converting enzyme 2 (ACE2). In this model, ACE2 with the human cytokeratin 18 promoter was knocked into the Hipp11 locus of C57BL/6J mouse by CRISPR - Cas9 (K18-hACE2 KI). Upon intranasal inoculation with high (3 × 105 PFU) or low (2.5 × 102 PFU) dose of SARS-CoV-2 wildtype (WT), Delta, Omicron BA.1, or Omicron BA.2 variants, all mice showed obvious infection symptoms, including weight loss, high viral loads in the lung, and interstitial pneumonia. 100% lethality was observed in K18-hACE2 KI mice infected by variants with a delay of endpoint for Delta and BA.1, and a significantly attenuated pathogenicity was observed for BA.2. The pneumonia of infected mice was accompanied by the infiltration of neutrophils and pulmonary fibrosis in the lung. Compared with K18-hACE2 Tg mice and HFH4-hACE2 Tg mice, K18-hACE2 KI mice are more susceptible to SARS-CoV-2. In the antivirals test, REGN10933 and Remdesivir had limited antiviral efficacies in K18-hACE2 KI mice upon the challenge of SARS-CoV-2 infections, while Nirmatrelvir, monoclonal antibody 4G4, and mRNA vaccines potently protected the mice from death. Our results suggest that the K18-hACE2 KI mouse model is lethal and stable for SARS-CoV-2 infection, and is practicable and stringent to antiviral development.


Assuntos
Enzima de Conversão de Angiotensina 2 , Antivirais , COVID-19 , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Animais , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Camundongos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Humanos , Pulmão/virologia , Pulmão/patologia , Tratamento Farmacológico da COVID-19 , Queratina-18/genética , Carga Viral , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/farmacologia , Técnicas de Introdução de Genes , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Feminino
2.
Virol Sin ; 39(3): 459-468, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782261

RESUMO

Ebola virus (EBOV) and Marburg virus (MARV), members of the Filoviridae family, are highly pathogenic and can cause hemorrhagic fevers, significantly impacting human society. Bats are considered reservoirs of these viruses because related filoviruses have been discovered in bats. However, due to the requirement for maximum containment laboratories when studying infectious viruses, the characterization of bat filoviruses often relies on pseudoviruses and minigenome systems. In this study, we used RACE technology to sequence the 3'-leader and 5'-trailer of Menglà virus (MLAV) and constructed a minigenome. Similar to MARV, the transcription activities of the MLAV minigenome are independent of VP30. We further assessed the effects of polymorphisms at the 5' end on MLAV minigenome activity and identified certain mutations that decrease minigenome reporter efficiency, probably due to alterations in the RNA secondary structure. The reporter activity upon recombination of the 3'-leaders and 5'-trailers of MLAV, MARV, and EBOV with those of the homologous or heterologous minigenomes was compared and it was found that the polymerase complex and leader and trailer sequences exhibit intrinsic specificities. Additionally, we investigated whether the polymerase complex proteins from EBOV and MARV support MLAV minigenome RNA synthesis and found that the homologous system is more efficient than the heterologous system. Remdesivir efficiently inhibited MLAV as well as EBOV replication. In summary, this study provides new information on bat filoviruses and the minigenome will be a useful tool for high-throughput antiviral drug screening.


Assuntos
Ebolavirus , Genoma Viral , Marburgvirus , Animais , Genoma Viral/genética , Ebolavirus/genética , Humanos , Marburgvirus/genética , Mengovirus/genética , Replicação Viral , RNA Viral/genética , Alanina/análogos & derivados , Alanina/farmacologia , Quirópteros/virologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/metabolismo , Filoviridae/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
3.
Cell Rep ; 43(2): 113689, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38241149

RESUMO

As a primary target of severe acute respiratory syndrome coronavirus 2, lung exhibits heterogeneous histopathological changes following infection. However, comprehensive insight into their protein basis with spatial resolution remains deficient, which hinders further understanding of coronavirus disease 2019 (COVID-19)-related pulmonary injury. Here, we generate a region-resolved proteomic atlas of hallmark pathological pulmonary structures by integrating histological examination, laser microdissection, and ultrasensitive proteomics. Over 10,000 proteins are quantified across 71 post-mortem specimens. We identify a spectrum of pathway dysregulations in alveolar epithelium, bronchial epithelium, and blood vessels compared with non-COVID-19 controls, providing evidence for transitional-state pneumocyte hyperplasia. Additionally, our data reveal the region-specific enrichment of functional markers in bronchiole mucus plugs, pulmonary fibrosis, airspace inflammation, and alveolar type 2 cells, uncovering their distinctive features. Furthermore, we detect increased protein expression associated with viral entry and inflammatory response across multiple regions, suggesting potential therapeutic targets. Collectively, this study provides a distinct perspective for deciphering COVID-19-caused pulmonary dysfunction by spatial proteomics.


Assuntos
COVID-19 , Lesão Pulmonar , Humanos , Proteômica , SARS-CoV-2 , Células Epiteliais Alveolares
4.
Adv Healthc Mater ; 12(24): e2300673, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37139567

RESUMO

The viral spike (S) protein on the surface of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to angiotensin-converting enzyme 2 (ACE2) receptors on the host cells, facilitating its entry and infection. Here, functionalized nanofibers targeting the S protein with peptide sequences of IRQFFKK, WVHFYHK and NSGGSVH, which are screened from a high-throughput one-bead one-compound screening strategy, are designed and prepared. The flexible nanofibers support multiple binding sites and efficiently entangle SARS-CoV-2, forming a nanofibrous network that blocks the interaction between the S protein of SARS-CoV-2 and the ACE2 on host cells, and efficiently reduce the invasiveness of SARS-CoV-2. In summary, nanofibers entangling represents a smart nanomedicine for the prevention of SARS-CoV-2.


Assuntos
COVID-19 , Nanofibras , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/química , Ligação Proteica , Peptídeos
5.
Cell ; 186(4): 850-863.e16, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36803605

RESUMO

It is unknown whether pangolins, the most trafficked mammals, play a role in the zoonotic transmission of bat coronaviruses. We report the circulation of a novel MERS-like coronavirus in Malayan pangolins, named Manis javanica HKU4-related coronavirus (MjHKU4r-CoV). Among 86 animals, four tested positive by pan-CoV PCR, and seven tested seropositive (11 and 12.8%). Four nearly identical (99.9%) genome sequences were obtained, and one virus was isolated (MjHKU4r-CoV-1). This virus utilizes human dipeptidyl peptidase-4 (hDPP4) as a receptor and host proteases for cell infection, which is enhanced by a furin cleavage site that is absent in all known bat HKU4r-CoVs. The MjHKU4r-CoV-1 spike shows higher binding affinity for hDPP4, and MjHKU4r-CoV-1 has a wider host range than bat HKU4-CoV. MjHKU4r-CoV-1 is infectious and pathogenic in human airways and intestinal organs and in hDPP4-transgenic mice. Our study highlights the importance of pangolins as reservoir hosts of coronaviruses poised for human disease emergence.


Assuntos
Infecções por Coronavirus , Coronavirus , Dipeptidil Peptidase 4 , Pangolins , Animais , Humanos , Camundongos , Quirópteros , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Endopeptidases/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Peptídeo Hidrolases/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Coronavirus/fisiologia
6.
Antiviral Res ; 209: 105491, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526073

RESUMO

In an effort to develop safe and innovative in vitro models for Ebola virus (EBOV) research, we generated a recombinant Ebola virus where the glycoprotein (GP) gene was substituted with the Cre recombinase (Cre) gene by reverse genetics. This defective virus could multiply itself in a complementary permissive cell line, which could express GP and reporter protein upon exogenous Cre existence. The main features of this novel model for Ebola virus are intact viral life cycle, robust virus multiplication and normal virions morphology. The design of this model ensures its safety, excellent stability and maneuverability as a tool for virology research as well as for antiviral agent screening and drug discovery, and such a design could be further adapted to other viruses.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Ebolavirus/genética , Ebolavirus/metabolismo , Linhagem Celular , Glicoproteínas/genética , Replicação Viral , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
7.
Virol Sin ; 37(4): 491-502, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35680114

RESUMO

Emergence and re-emergence of infectious diseases of wildlife origin have led pre-emptive pathogen surveillances in animals to be a public health priority. Rodents and shrews are among the most numerically abundant vertebrate taxa and are known as natural hosts of important zoonotic viruses. Many surveillance programs focused more on RNA viruses. In comparison, much less is known about DNA viruses harbored by these small mammals. To fill this knowledge gap, tissue specimens of 232 animals including 226 rodents, five shrews and one hedgehog were collected from 5 counties in Kenya and tested for the presence of DNA viruses belonging to 7 viral families by PCR. Diverse DNA sequences of adenoviruses, adeno-associated viruses, herpesviruses and polyomaviruses were detected. Phylogenetic analyses revealed that most of these viruses showed distinction from previously described viruses and formed new clusters. Furthermore, this is the first report of the discovery and full-length genome characterization of a polyomavirus in Lemniscomys species. This novel polyomavirus, named LsPyV KY187, has less than 60% amino acid sequence identity to the most related Glis glis polyomavirus 1 and Sciurus carolinensis polyomavirus 1 in both large and small T-antigen proteins and thus can be putatively allocated to a novel species within Betapolyomavirus. Our findings help us better understand the genetic diversity of DNA viruses in rodent and shrew populations in Kenya and provide new insights into the evolution of those DNA viruses in their small mammal reservoirs. It demonstrates the necessity of ongoing pathogen discovery studies targeting rodent-borne viruses in East Africa.


Assuntos
Herpesviridae , Polyomavirus , Animais , Genoma Viral , Quênia , Murinae , Filogenia , Polyomavirus/genética , Musaranhos/genética
8.
Viruses ; 13(10)2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34696392

RESUMO

Bats have been identified as natural reservoirs of a variety of coronaviruses. They harbor at least 19 of the 33 defined species of alpha- and betacoronaviruses. Previously, the bat coronavirus HKU10 was found in two bat species of different suborders, Rousettus leschenaultia and Hipposideros pomona, in south China. However, its geographic distribution and evolution history are not fully investigated. Here, we screened this viral species by a nested reverse transcriptase PCR in our archived samples collected over 10 years from 25 provinces of China and one province of Laos. From 8004 bat fecal samples, 26 were found to be positive for bat coronavirus HKU10 (BtCoV HKU10). New habitats of BtCoV HKU10 were found in the Yunnan, Guangxi, and Hainan Provinces of China, and Louang Namtha Province in Laos. In addition to H. pomona, BtCoV HKU10 variants were found circulating in Aselliscus stoliczkanus and Hipposideros larvatus. We sequenced full-length genomes of 17 newly discovered BtCoV HKU10 strains and compared them with previously published sequences. Our results revealed a much higher genetic diversity of BtCoV HKU10, particularly in spike genes and accessory genes. Besides the two previously reported lineages, we found six novel lineages in their new habitats, three of which were located in Yunnan province. The genotypes of these viruses are closely related to sampling locations based on polyproteins, and correlated to bat species based on spike genes. Combining phylogenetic analysis, selective pressure, and molecular-clock calculation, we demonstrated that Yunnan bats harbor a gene pool of BtCoV HKU10, with H. pomona as a natural reservoir. The cell tropism test using spike-pseudotyped lentivirus system showed that BtCoV HKU10 could enter cells from human and bat, suggesting a potential interspecies spillover. Continuous studies on these bat coronaviruses will expand our understanding of the evolution and genetic diversity of coronaviruses, and provide a prewarning of potential zoonotic diseases from bats.


Assuntos
Alphacoronavirus/genética , Quirópteros/virologia , Alphacoronavirus/patogenicidade , Animais , Sequência de Bases/genética , Evolução Biológica , China , Quirópteros/genética , Coronavirus/genética , Coronavirus/patogenicidade , Infecções por Coronavirus/virologia , Evolução Molecular , Variação Genética/genética , Genoma Viral/genética , Genótipo , Filogenia , Análise de Sequência de DNA/métodos , Proteínas Virais/genética
9.
Emerg Microbes Infect ; 9(1): 2653-2662, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33232205

RESUMO

In the face of COVID-19 pandemic caused by the newly emerged SARS-CoV-2, an inactivated, Vero cell-based, whole virion vaccine candidate has been developed and entered into phase III clinical trials within six months. Biochemical and immunogenic characterization of structural proteins and their post-translational modifications in virions, the end-products of the vaccine candidate, would be essential for the quality control and process development of vaccine products and for studying the immunogenicity and pathogenesis of SARS-CoV-2. By using a panel of rabbit antisera against virions and five structural proteins together with a convalescent serum, the spike (S) glycoprotein was shown to be N-linked glycosylated, PNGase F-sensitive, endoglycosidase H-resistant and cleaved by Furin-like proteases into S1 and S2 subunits. The full-length S and S1/S2 subunits could form homodimers/trimers. The membrane (M) protein was partially N-linked glycosylated; the accessory protein 3a existed in three different forms, indicative of cleavage and dimerization. Furthermore, analysis of the antigenicity of these proteins and their post-translationally modified forms demonstrated that S protein induced the strongest antibody response in both convalescent and immunized animal sera. Interestingly, immunization with the inactivated vaccine did not elicit antibody response against the S2 subunit, whereas strong antibody response against both S1 and S2 subunits was detected in the convalescent serum. Moreover, vaccination stimulated stronger antibody response against S multimers than did the natural infection. This study revealed that the native S glycoprotein stimulated neutralizing antibodies, while bacterially-expressed S fragments did not. The study on S modifications would facilitate design of S-based anti-SARS-CoV-2 vaccines.


Assuntos
Vacinas contra COVID-19 , Processamento de Proteína Pós-Traducional , SARS-CoV-2/isolamento & purificação , Proteínas Estruturais Virais , Vírion , Animais , Antígenos Virais/análise , Antígenos Virais/metabolismo , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Bovinos , Chlorocebus aethiops , Humanos , Coelhos , SARS-CoV-2/imunologia , Vacinas de Produtos Inativados/química , Vacinas de Produtos Inativados/imunologia , Células Vero , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/imunologia , Proteínas Estruturais Virais/isolamento & purificação , Vírion/química , Vírion/imunologia , Vírion/isolamento & purificação
10.
Signal Transduct Target Ther ; 5(1): 235, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037188

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to respiratory illness and multi-organ failure in critically ill patients. Although the virus-induced lung damage and inflammatory cytokine storm are believed to be directly associated with coronavirus disease 2019 (COVID-19) clinical manifestations, the underlying mechanisms of virus-triggered inflammatory responses are currently unknown. Here we report that SARS-CoV-2 infection activates caspase-8 to trigger cell apoptosis and inflammatory cytokine processing in the lung epithelial cells. The processed inflammatory cytokines are released through the virus-induced necroptosis pathway. Virus-induced apoptosis, necroptosis, and inflammation activation were also observed in the lung sections of SARS-CoV-2-infected HFH4-hACE2 transgenic mouse model, a valid model for studying SARS-CoV-2 pathogenesis. Furthermore, analysis of the postmortem lung sections of fatal COVID-19 patients revealed not only apoptosis and necroptosis but also massive inflammatory cell infiltration, necrotic cell debris, and pulmonary interstitial fibrosis, typical of immune pathogenesis in the lung. The SARS-CoV-2 infection triggered a dual mode of cell death pathways and caspase-8-dependent inflammatory responses may lead to the lung damage in the COVID-19 patients. These discoveries might assist the development of therapeutic strategies to treat COVID-19.


Assuntos
Apoptose/imunologia , Betacoronavirus/patogenicidade , Caspase 8/imunologia , Infecções por Coronavirus/imunologia , Síndrome da Liberação de Citocina/imunologia , Necroptose/imunologia , Pneumonia Viral/imunologia , Fibrose Pulmonar/imunologia , Animais , COVID-19 , Caspase 8/genética , Linhagem Celular Tumoral , Quimiocina CCL5/genética , Quimiocina CCL5/imunologia , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/patologia , Síndrome da Liberação de Citocina/virologia , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-7/genética , Interleucina-7/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Transgênicos , Pandemias , Pneumonia Viral/genética , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Fibrose Pulmonar/virologia , SARS-CoV-2 , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
11.
Virol Sin ; 33(1): 44-58, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29500690

RESUMO

Hepatitis E virus (HEV) is the prototype of the family Hepeviridae and the causative agent of common acute viral hepatitis. Genetically diverse HEV-related viruses have been detected in a variety of mammals and some of them may have zoonotic potential. In this study, we tested 278 specimens collected from seven wild small mammal species in Yunnan province, China, for the presence and prevalence of orthohepevirus by broad-spectrum reverse transcription (RT)-PCR. HEV-related sequences were detected in two rodent species, including Chevrier's field mouse (Apodemus chevrieri, family Muridae) and Père David's vole (Eothenomys melanogaster, family Cricetidae), with the infection rates of 29.20% (59/202) and 7.27% (4/55), respectively. Further four representative full-length genomes were generated: two each from Chevrier's field mouse (named RdHEVAc14 and RdHEVAc86) and Père David's vole (RdHEVEm40 and RdHEVEm67). Phylogenetic analyses and pairwise distance comparisons of whole genome sequences and amino acid sequences of the gene coding regions showed that orthohepeviruses identified in Chinese Chevrier's field mouse and Père David's vole belonged to the species Orthohepevirus C but were highly divergent from the two assigned genotypes: HEV-C1 derived from rat and shrew, and HEV-C2 derived from ferret and possibly mink. Quantitative real-time RT-PCR demonstrated that these newly discovered orthohepeviruses had hepatic tropism. In summary, our work discovered two putative novel genotypes orthohepeviruses preliminarily named HEV-C3 and HEV-C4 within the species Orthohepevirus C, which expands our understanding of orthohepevirus infection in the order Rodentia and gives new insights into the origin, evolution, and host range of orthohepevirus.


Assuntos
Arvicolinae/virologia , Variação Genética , Hepatite Viral Animal/virologia , Hepevirus/classificação , Hepevirus/isolamento & purificação , Murinae/virologia , Infecções por Vírus de RNA/veterinária , Animais , China , Genótipo , Hepatite Viral Animal/epidemiologia , Hepevirus/genética , Hepevirus/fisiologia , Programas de Rastreamento , Filogenia , Prevalência , Infecções por Vírus de RNA/epidemiologia , Infecções por Vírus de RNA/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência , Tropismo Viral , Sequenciamento Completo do Genoma
12.
PLoS One ; 12(8): e0182866, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28793350

RESUMO

Bats are important reservoirs of many viruses, which are capable of infecting the host without inducing obvious clinical diseases. Interferon and the downstream interferon regulated genes (IRGs) are known to act as the first line of defense against viral infections. Little is known about the transcriptional profile of genes being induced by interferon in bats and their role in controlling virus infection. In this study, we constructed IFNAR2 knockout bat cell lines using CRISPR technology and further characterized gene expression profiles induced by the most abundant IFN-α (IFN-α3). Firstly, we demonstrated that the CRISPR/Cas9 system is applicable for bat cells as this represents the first CRIPSR knockout cell line for bats. Our results showed the pleiotropic effect of IFN-α3 on the bat kidney cell line, PaKiT03. As expected, we confirmed that IFNAR2 is indispensable for IFN-a signaling pathway and plays an important role in antiviral immunity. Unexpectedly, we also identified novel IFNAR2-dependent IRGs which are enriched in pathways related to cancer. To our knowledge, this seems to be bat-specific as no such observation has been reported for other mammalian species. This study expands our knowledge about bat immunology and the cell line established can provide a powerful tool for future study into virus-bat interaction and cancer biology.


Assuntos
Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Interferon-alfa/farmacologia , Rim/efeitos dos fármacos , Receptor de Interferon alfa e beta/genética , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Quirópteros , Perfilação da Expressão Gênica , Rim/citologia , Rim/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Transcriptoma/efeitos dos fármacos
13.
Virol Sin ; 32(3): 226-234, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28589292

RESUMO

Bats carry a variety of viruses, and some of them cause public health problems. Macau, which is famous for its gambling industry, has a complex population structure. The globalization in such an international metropolis has enhanced the chance of disease transmission. Therefore, surveillance of zoonotic viruses is necessary for the early warning of potential emerging infectious diseases. Here, we report the first surveillance of bat viruses in Macau. In this study, we collected 1004 samples involving 10 bat species from 7 sites from April 2015 to May 2016, and examined the presence of viruses using nucleic acid-based methods. Coronaviruses, adenoviruses and paramyxoviruses were detected in these samples, with a high prevalence of coronaviruses. While, none was positive for hepatitis A virus, hepatitis E virus or hantavirus. Co-infections are not common in those bat species, but coronavirus HKU6 and adenovirus can be found commonly occurred in Myotis ricketti.


Assuntos
Biodiversidade , Fezes/virologia , Vírus/classificação , Vírus/isolamento & purificação , Animais , Quirópteros , Macau
14.
J Gen Virol ; 98(4): 739-748, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28475035

RESUMO

Bats have been reported to carry diverse adenoviruses. However, most bat adenoviruses have been identified on the basis of partial genome sequences, and knowledge on the evolution of bat adenoviruses remains limited. In this study, we isolated and characterized four novel adenoviruses from two distinct bat species, and their full-length genomes were sequenced. Sequence analysis revealed that these isolates represented three distinct species of the genus Mastadenovirus. However, all isolates had an exceptionally low G+C content and relatively short genomes compared with other known mastadenoviruses. We further analysed the relationships among the G+C content, 5'-C-phosphate-G-3' (CpG) representation and genome size in the family Adenoviridae. Our results revealed that the CpG representation in adenoviral genomes depends primarily on the level of methylation, and the genome size displayed significant positive correlations with both G+C content and CpG representation. Since ancestral adenoviruses are believed to have contained short genomes, those probably had a low G+C content, similar to the genomes of these bat strains. Our results suggest that bats are important natural reservoirs for adenoviruses and play important roles in the evolution of adenoviruses.


Assuntos
Adenoviridae/genética , Quirópteros/virologia , Evolução Molecular , Adenoviridae/classificação , Adenoviridae/isolamento & purificação , Animais , Composição de Bases , Sequência de Bases , Tamanho do Genoma , Genoma Viral , Dados de Sequência Molecular , Filogenia
15.
Virol Sin ; 32(2): 101-114, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28393313

RESUMO

This is the first country-wide surveillance of bat-borne viruses in Kenya spanning from 2012-2015 covering sites perceived to have medium to high level bat-human interaction. The objective of this surveillance study was to apply a non-invasive approach using fresh feces to detect viruses circulating within the diverse species of Kenyan bats. We screened for both DNA and RNA viruses; specifically, astroviruses (AstVs), adenoviruses (ADVs), caliciviruses (CalVs), coronaviruses (CoVs), flaviviruses, filoviruses, paramyxoviruses (PMVs), polyomaviruses (PYVs) and rotaviruses. We used family-specific primers, amplicon sequencing and further characterization by phylogenetic analysis. Except for filoviruses, eight virus families were detected with varying distributions and positive rates across the five regions (former provinces) studied. AstVs (12.83%), CoVs (3.97%), PMV (2.4%), ADV (2.26%), PYV (1.65%), CalVs (0.29%), rotavirus (0.19%) and flavivirus (0.19%). Novel CalVs were detected in Rousettus aegyptiacus and Mops condylurus while novel Rotavirus-A-related viruses were detected in Taphozous bats and R. aegyptiacus. The two Rotavirus A (RVA) strains detected were highly related to human strains with VP6 genotypes I2 and I16. Genotype I16 has previously been assigned to human RVA-strain B10 from Kenya only, which raises public health concern, particularly considering increased human-bat interaction. Additionally, 229E-like bat CoVs were detected in samples originating from Hipposideros bats roosting in sites with high human activity. Our findings confirm the presence of diverse viruses in Kenyan bats while providing extended knowledge on bat virus distribution. The detection of viruses highly related to human strains and hence of public health concern, underscores the importance of continuous surveillance.


Assuntos
Quirópteros/virologia , Infecções por Vírus de DNA/veterinária , Vírus de DNA/isolamento & purificação , Fezes/virologia , Infecções por Vírus de RNA/veterinária , Vírus de RNA/isolamento & purificação , Animais , Infecções por Vírus de DNA/virologia , Vírus de DNA/classificação , Vírus de DNA/genética , Quênia , Filogenia , Reação em Cadeia da Polimerase , Infecções por Vírus de RNA/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , Análise de Sequência de DNA
16.
Virol J ; 13(1): 190, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27884154

RESUMO

BACKGROUND: Adenoviruses are important pathogens with the potential for interspecies transmission between humans and non-human primates. Although many adenoviruses have been identified in monkeys, the knowledge of these viruses from the Colobinae members is quite limited. FINDINGS: We conducted a surveillance of viral infection in endangered golden snub-nosed monkeys (Rhinopithecus roxellana) in the subfamily Colobinae in China, and found that 5.1% of sampled individuals were positive for adenovirus. One of the adenoviruses (SAdV-WIV19) was successfully isolated and its full-length genome was sequenced. The full-length genome of WIV19 is 33,562 bp in size, has a G + C content of 56.2%, and encodes 35 putative genes. Sequence analysis revealed that this virus represents a novel species in the genus Mastadenovirus. Diverse cell lines, including those of human origin, were susceptible to WIV19. CONCLUSION: We report the first time the isolation and full-length genomic characterization of an adenovirus from the subfamily Colobinae.


Assuntos
Infecções por Adenoviridae/veterinária , Adenoviridae/classificação , Adenoviridae/isolamento & purificação , Colobinae/virologia , Doenças dos Primatas/epidemiologia , Doenças dos Primatas/virologia , Adenoviridae/genética , Infecções por Adenoviridae/epidemiologia , Infecções por Adenoviridae/virologia , Animais , Composição de Bases , China/epidemiologia , Análise por Conglomerados , Ordem dos Genes , Genes Virais , Genoma Viral , Filogenia , Prevalência , Análise de Sequência de DNA
17.
J Gen Virol ; 97(7): 1625-1635, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27032099

RESUMO

Bats carry diverse RNA viruses, some of which are responsible for human diseases. Compared to bat-borne RNA viruses, relatively little information is known regarding bat-borne DNA viruses. In this study, we isolated and characterized three novel bat adenoviruses (BtAdV WIV9-11) from Rhinolophus sinicus. Their genomes, which are highly similar to each other but distinct from those of previously sequenced adenoviruses (AdVs), are 37 545, 37 566 and 38 073 bp in size, respectively. An unusually large E3 gene was identified in their genomes. Phylogenetic and taxonomic analyses suggested that these isolates represent a distinct species of the genus Mastadenovirus. Cell susceptibility assays revealed a broad cell tropism for these isolates, indicating that they have a potentially wide host range. Our results expand the understanding of genetic diversity of bat AdVs.


Assuntos
Proteínas E3 de Adenovirus/genética , Quirópteros/virologia , Genoma Viral/genética , Mastadenovirus/classificação , Mastadenovirus/genética , Animais , Sequência de Bases , Proteínas do Capsídeo/genética , Chlorocebus aethiops , Cricetinae , DNA Viral/genética , Variação Genética/genética , Especificidade de Hospedeiro , Humanos , Macaca mulatta , Filogenia , Análise de Sequência de DNA , Suínos , Tropismo Viral
18.
Virol Sin ; 30(6): 425-32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26645237

RESUMO

Bats are natural reservoir hosts for many viruses that produce no clinical symptoms in bats. Therefore, bats may have evolved effective mechanisms to control viral replication. However, little information is available on bat immune responses to viral infection. Type I interferon (IFN) plays a key role in controlling viral infections. In this study, we report the cloning, expression, and biological activity of interferon ß (IFNß) from the Chinese microbat species, Myotis davidii. We demonstrated the upregulation of IFNB and IFN-stimulated genes in a kidney cell line derived from M. davidii after treatment with polyI:C or infection with Sendai virus. Furthermore, the recombinant IFNß inhibited vesicular stomatitis virus and bat adenovirus replication in cell lines from two bat species, M. davidii and Rhinolophus sinicus. We provide the first in vitro evidence of IFNß antiviral activity in microbats, which has important implications for virus interactions with these hosts.


Assuntos
Antivirais/farmacologia , Quirópteros/genética , Quirópteros/imunologia , Clonagem Molecular , Interferon beta/genética , Interferon beta/imunologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Quirópteros/virologia , Humanos , Imunidade Inata , Interferon Tipo I/farmacologia , Interferon beta/biossíntese , Interferon beta/farmacologia , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de Proteína , Homologia de Sequência , Regulação para Cima , Vesiculovirus/efeitos dos fármacos , Vesiculovirus/fisiologia
19.
Nat Med ; 21(12): 1508-13, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26552008

RESUMO

The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome (MERS)-CoV underscores the threat of cross-species transmission events leading to outbreaks in humans. Here we examine the disease potential of a SARS-like virus, SHC014-CoV, which is currently circulating in Chinese horseshoe bat populations. Using the SARS-CoV reverse genetics system, we generated and characterized a chimeric virus expressing the spike of bat coronavirus SHC014 in a mouse-adapted SARS-CoV backbone. The results indicate that group 2b viruses encoding the SHC014 spike in a wild-type backbone can efficiently use multiple orthologs of the SARS receptor human angiotensin converting enzyme II (ACE2), replicate efficiently in primary human airway cells and achieve in vitro titers equivalent to epidemic strains of SARS-CoV. Additionally, in vivo experiments demonstrate replication of the chimeric virus in mouse lung with notable pathogenesis. Evaluation of available SARS-based immune-therapeutic and prophylactic modalities revealed poor efficacy; both monoclonal antibody and vaccine approaches failed to neutralize and protect from infection with CoVs using the novel spike protein. On the basis of these findings, we synthetically re-derived an infectious full-length SHC014 recombinant virus and demonstrate robust viral replication both in vitro and in vivo. Our work suggests a potential risk of SARS-CoV re-emergence from viruses currently circulating in bat populations.


Assuntos
Quirópteros/virologia , Síndrome Respiratória Aguda Grave/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Epidemias , Células Epiteliais/patologia , Células Epiteliais/virologia , Feminino , Humanos , Pulmão/virologia , Camundongos Endogâmicos BALB C , Testes de Neutralização , Filogenia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Virulência , Replicação Viral
20.
Virol Sin ; 26(1): 67-71, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21331893

RESUMO

White spot syndrome virus (WSSV), Taura syndrome virus (TSV) and Infectious hypodermal and haematopoietic necrosis virus (IHHNV) are three shrimp viruses responsible for major pandemics affecting the shrimp farming industry. Shrimps samples were collected from 12 farms in Zhejiang province, China, in 2008 and analyzed by PCR to determine the prevalence of these viruses. From the 12 sampling locations, 8 farms were positive for WSSV, 8 for IHHNV and 6 for both WSSV and IHHNV. An average percentage of 57.4% of shrimp individuals were infected with WSSV, while 49.2% were infected with IHHNV. A high prevalence of co-infection with WSSV and IHHNV among samples was detected from the following samples: Bingjiang (93.3%), liuao (66.7%), Jianshan (46.7%) and Xianxiang (46.7%). No samples exhibited evidence of infection with TSV in collected samples. This study provides comprehensive information of the prevalence of three shrimp viruses in Zhejiang and may be helpful for disease prevention control in this region.


Assuntos
Dicistroviridae/isolamento & purificação , Vírus da Necrose Hematopoética Infecciosa/isolamento & purificação , Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1/isolamento & purificação , Animais , China , Dicistroviridae/genética , Vírus da Necrose Hematopoética Infecciosa/genética , Vírus da Síndrome da Mancha Branca 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA