Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Quant Imaging Med Surg ; 14(1): 800-813, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38223021

RESUMO

Background: Osteoporotic vertebral compression fractures (OVCFs) are the most common type of fragility fracture. Distinguishing between OVCFs and other types of vertebra diseases, such as old fractures (OFs), Schmorl's node (SN), Kummell's disease (KD), and previous surgery (PS), is critical for subsequent surgery and treatment. Combining with advanced deep learning (DL) technologies, this study plans to develop a DL-driven diagnostic system for diagnosing multi-type vertebra diseases. Methods: We established a large-scale dataset based on the computed tomography (CT) images of 1,051 patients with OVCFs from Luhe Hospital and used data of 46 patients from Xuanwu Hospital as alternative hospital validation dataset. Each patient underwent one examination. The dataset contained 11,417 CT slices and 19,718 manually annotated vertebrae with diseases. A two-stage DL-based system was developed to diagnose five vertebra diseases. The proposed system consisted of a vertebra detection module (VDModule) and a vertebra classification module (VCModule). Results: The training and testing dataset for the VDModule consisted of 9,135 and 3,212 vertebrae, respectively. The VDModule using the ResNet18-based Faster region-based convolutional neural network (R-CNN) model achieved an area under the curve (AUC), false-positive (FP) rate, and false-negative (FN) rate of 0.982, 1.52%, and 1.33%, respectively, in the testing dataset. The training dataset for VCModule consisted of 14,584 and 47,604 diseased and normal vertebrae, respectively. The testing dataset consisted of 4,489 and 15,122 diseased and normal vertebrae, respectively. The ResNet50-based VCModule achieved an average sensitivity and specificity of 0.919 and 0.995, respectively, in diagnosing four kinds of vertebra diseases except for SN in the testing dataset. In the alternative hospital validation dataset, the ResNet50-based VCModule achieved an average sensitivity and specificity of 0.891 and 0.989, respectively, in diagnosing four kinds of vertebra diseases except for SN. Conclusions: Our proposed DL system can accurately diagnose four vertebra diseases and has strong potential to facilitate the accurate and rapid diagnosis of vertebral diseases.

2.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 30(3): 611-6, 2013 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-23865329

RESUMO

The rapid development of minimally invasive surgery technology requires higher flexibility of surgical treatment and small volume of medical instrument. This paper proposed a new type of minimally invasive surgery wrist institution actuated by TiNi shape memory alloy (SMA) wire. The wrist institution has some advantages such as compact structure, flexible function, light weight, big movement space, and high output position precision. The paper briefly introduces the properties of TiNi SMA and describes the configuration of wrist institution. We also carried out mechanism simulation analysis to the mechanics model and set up kinematics equations, and finally presented the workspace of the institution.


Assuntos
Ligas , Procedimentos Cirúrgicos Minimamente Invasivos/instrumentação , Níquel , Robótica/instrumentação , Titânio , Fenômenos Biomecânicos/fisiologia , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA